" ‘Technical Report
ST CMU/SEI-89-TR-19"

~ ESD-89-TR-27 @

Software Engineering Institute

>

Kernel Architecture Manual

Judy Bamberger

Timothy Coddington
‘ Currie Colket

Robert Firth
> Daniel Klein
—_— / David Stinchcomb

" ~ Roger Van Scoy
D December 1989
ELECTE
MAR 16 1390
D P | { DISTARUTON STAIIMANT & |

Appiovea ior puriic releasel l

Dumzunzr Unimiied !

90 03 15 (57

Technical Report

CMU/SEI-89-TR-19
ESD-89-TR-27
December 1989

Kernel Architecture Manual

-

Judy Bamberger
Timothy Coddington
Currie Colket
Robert Firth
_______ . Daniel Klein
jacemmen T ~— David Stinchcomb
NTIS ChALY \
o s) Roger Van Scoy
Unanse o o 1
Justiin g S — Distributed Ada Real-Time Kernel Project
By |
Dyt cne i
R
T T
>t : ~- .'- : “
i {
A-l]

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh Pennsylvania 15213

This report was prepared for the
SEI Joint Program Office

ESD/AVS .
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official DoD position. Itis pub-
lished in the interest of scientific and technical information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

AN Q&\-—«%\L
Karl Shingler
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright © 1989 Camegie Mellon University

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of scientific and
technical information for DoD personnel, DoD contractors and potential contractors, and other U.S. Government agency personne!l
and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical Information Center, Attn: FDRA, Cameron
Station, Alexandria, VA 22304-6145.

Copies of this document are also available through the National Technical Information Service. For information on ordering, plcase
contact NTIS directly: National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Ta

ble of Contents

I. Overview

1

2
3

. Introduction
1.1. Definition of Terms
. Software Architecture Overview
. Hardware Architecture Overview
3.1. The DARK Testbed
3.1.1. Target Processor
3.1.2. VME Bus
3.1.3. Host Computers
3.1.4. Distributed Network
3.2. Network Processor
3.2.1. Nproc-to-Nproc Interface
3.2.1.1. Parallel Interface
3.3. Kernel Processor
3.3.1. Kproc-to-Nproc Interface
3.3.2. Time Synchronization Bus interface
3.3.3. Non-Kernel Device

ll. Application Interface

OWOONOOEWN =

. Alarm Management
. Communication Management
. Hardware Interface

. Interrupt Management

. Process Attribute Modifiers
. Process Attribute Readers
. Process Managers

. Processor Management

. Semaphore Management

10. Time Globals

1

1. Time Management

12. Timeslice Management
13. Tool Interface

lil. Core Kernel

]
2
3
4
5
6
7

.Bus 1/O

. Clock

. Context Switcher

. Exception_Raiser

. Internal Process Management
. Kernel interrupt Management
. Kernel Time

101
104
107

CMU/SEI-89-TR-19

8. Network Configuration
9. Process_Encapsulation
10. Process Index Table
11. Process Table

12. Scheduler

13. Time Keeper

14. Tool Logger

IV. Communication Subsystem
1. Communication Overview
1.1. Design Decisions
2. Data Structures
2.1. Datagram Data Structures
2.2. Datagram_Pointer
2.3. Datagram_Class
2.4. Datagram
. Semaphores and Atomic Regions
. Datagram Management
. Packet Communication
. Kproc/Nproc Interface
6.1. Shared Memory
6.2. Enqueueing Messages for Transmission
6.3. Receiving Incoming Messages
. Nproc Communication Routines
. Message Transfer Thread Examples
8.1. Detailed Thread Description
8.2. Graphic Representation of Thread

V. General Utilities
1. Low_level_storage_manager
2. Storage Manager
3. Queue Manager

oOOMpA,W

o

VIi. Target-Specific Utilities
1. Interrupt Names
2. Low _level_hardware
3. Memory Addresses
4. MVME133A Definitions
5. MZ8305 Definitions
6. SCC_porta
7. Timer_controller

113
115
117
121
123
138
149

183
154
155
157
157
157
157
158
163
165
171
172
172
172
173
174
182
182
183

191
192
194
196

197
198
200
203
205
207
209
218

CMU/SEI-88-TR-19

VIl. Debug Utilities

1.
. Debug

. dgg_debug

. Make NCT

. NCT_debug

. PTB_debug

. semaphore_debug

VIIl.
. Target Processor Board

NO O~ WON

CSA_debug

68020 Hardware Configuration

1.1. MVME133A Board

.1. Local Memory

. Floating Point Coprocessor
.3. Real-Time Clock

. Serial Debug Port

. Serial Ports A and B
. Timers

. Interrupts

. ROM, PROM, EPROM, and EEPROM Sockets
. VME System Controlier

0. P1 And P2 Connector

1.2. Kernel Processor Board Configuration

1.3. Network Processor Board Configuration

1.1
1.1.2
1.1.3
1.1.4
1.1.5
1.1.6
11.7
1.1.8
1.1.9
114

. Parallel Interface

2.1. MZ8305 Board

2.2. Parallel Interface/Timer
2.2.1. Parallel /0 Connector

2.3. Input Port Parallel Board Configuration
2.4. Output Port Parallel Board Configuration

. Shared Memory

3.1. Shared Memory Board Configuration

. VME Chassis

4.1. Backplane Jumper Configuration

. Equipment Rack
. Host System

6.1. Serial I/0 Ports

. Test Equipment

7.1. Test Equipment Hardware

. Low-Level I/O

8.1. Software

. Interrupts

223
224
226
228
231
233
235
239

241
242
242
242
243
243
243
243
243
244
244
244
244
245
246
247
247
247
247
248
248
249
249
250
251
252
253
253
255
255
256
257
258

CMU/SEI-89-TR-19

9.1. Interrupt Request Levels 258
9.2. Interrupt Vector Numbers 258
9.3. Interrupt Configuration Summary 258
10. Memory Map 260
11. Network Cable 261
12. Synchonization Bus 262
12.1. Bus Description 262
12.2. Bus Operation 262
13. P2 Backplane Connector Wiring 266
IX. TeleSoft Ada Compiler Dependencies 267
1. Major Dependencies 268
1.1. Software Architecture and Design 268
1.2. Basic Data Types 268
1.3. Encapsulation of Assembler 269

2. Software Architecture and Design Dependencies 270
2.1. Code Customization 270
2.2. Representation of Errors 271
2.3. Module Initialization 272
2.4. Chapter 13 Issues 272
2.5. Pragmas 273
2.6. Ada Use Subset 274

3. Basic Data Types and Operations 275
3.1. Sizes of Data Types 275
3.2. Untyped Storage 275
3.3. Integer Types 276
3.4. Duration 277
3.5. Machine Addresses 278
3.6. Strings 278

4. Encapsulation of Assembly Code 279
4.1. Linkage 279
4.2. Program and Data Sections and Attributes 279

4 3. Data Representation 280
4.4. Access to Ada Objects from Assembly Code 280
4.5. Access to Assembler Objects from Ada Code 280
4.6. Procedural Interface 280
4.7. Exceptions 281
Appendix A. Data and Control Flow Diagrams 282
v CMU/SEI-88-TR-19

N
g

Gk o NS U W B a P En al o m @ GE TR Iy R s

Appendix B. Kernel interface Control Document 285
Appendix C. Race Conditions 287
C.1. Process Table - Context Save Area 288

C.2. Process Table - Schedule Attributes 288

C.3. Process Table - Message Queue 288

C.4. Process Table - Pending Activities Attributes 290

C.5. Process Table - Semaphores Attributes 290

C.6. Table - Tool Interface Attributes 290

C.7. Interrupt Table 291
C.8. Network Configuration Table 291

C.9. Timeslice Parameters 291
Appendix D. 68020 Assembler Interface 292
D.1. Linkage 292

D.2. Program and Data Sections 293

D.3. Data Representation 293

D.4. Access to Ada Objects from Assembly Code 293

D.5. Access to Assembler Objects from Ada Code 293

D.6. Procedural Interface 293
D.6.1. Entry and Exit Protocol 293

D.6.2. Register Usage 294

D.6.3. Stack Manipulation 294

D.6.4. Parameter Passing 294
D.6.4.1. Mode of Transmission 294

D.6.4.2. Manner and Order of Transmission 294

D.6.4.3. Accessing Parameters and Returning Function Results 294

D.6.5. Example 295

D.7. Exceptions 296
D.7.1. Raising Exceptions 296

D.7.2. Exception Propagation 296

D.7.3. Guarded Regions 296
Appendix E. 68020 Tailoring 297
E.1. Sizes of Data Types 297

E.2. Untyped Storage 297

E.3. Integer Types 298

E.4. Duration 298

E.5. Machine Addresses 298

E.6. Strings 299

CMU/SEI-89-TR-19 v

Appendix F. Procedure to Requirement Mapping

Appendix G. Requirement to Procedure Mapping

Appendix H. Short Names

Appendix I. Overview of VMS Version

Appendix J. VMS Ada Compiler Dependencies

J.1. introduction
J.1.1. Relevant Documents
J.2. Major Dependencies
J.2.1. Software Architecture and Design
J.2.2. Basic Data Types
J.2.3. Encapsulation of Assembler
J.3. Software Architecture and Design Dependencies
J.3.1. Code Customization
J.3.2. Representation of Errors
J.3.3. Module Initialization
J.3.4. Chapter 13 Issues
J.3.5. Pragmas
J.3.6. Ada Use Subset
J.4. Basic Data Types and Operations
J.5. Encapsulation of Assembly Code

Appendix K. VAX-11 Assembler Interface

K.1. Linkage
K.2. Program and Data Sections
K.3. Data Representation
K.4. Procedural Interface
K.4.1. Entry and Exit Protocol
K.5. Register Usage
K.5.1. Stack Manipulation
K.5.2. Parameter Passing
K.5.3. Mode of Transmission
K.5.4. Manner and Order of Transmission
K.5.5. Accessing Parameters and Returning Function Results
K.6. Exceptions
K.6.1. Raising Exceptions
K.6.2. Exception Propagation
K.8.3. Guarded Regions

Appendix L. VAX-11 Tailoring

L.1. Sizes of Data Types

300
334
355
358

360
360
360
360
360
361
361
361
361
362
362
362
363
364
364
364

365
365
365
365
366
366
366
366
366
367
367
367
367
367
367
368

369
369

vi

CMU/SEI-89-TR-19

L.2. Untyped Storage
L.3. Integer Types

L.4. Duration

L.5. Machine Addresses
L.6. Strings

370
371
371
371
372

CMU/SEI-89-TR-19

vil

—_---—-ﬂ---'--'ﬁ-

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:

List of Figures

Stylized Package Template 2
Kernel Context Diagram 5
Kernel Level 1 DFD 6
User View of the Kernel 8
Host Configuration 11
Distributed Network 11
Network Processor Hardware 12
DARK Network Overview 14
Node-to-Node Connections 15
Parallel Interface Hardware 16
Kernel Processor Hardware 17
Kproc-to-Nproc Interface 17
Non-Kernel Message Header 19
Set Alarm 23
Network Initialization Protocol: Phase 1 55
Network Initialization Protocol: Phase 2 56
Network Configuration Table 114
Process Mapping Table 120
Process Table 121
Pending Activity States 122
Application Blocks 126
Application Unblocks 127
Run Queue 129
Setting an Alarm Event 140
Event Expiration 141
Time Event Queus 147
Data Flow Thruugh the Kernel and Network 154
Packet Layout 171
Send_Message — Application Message to Datagram 184
Output Message Queue 185
Datagram to Packet Data Flow 186
Packet Traffic onto Network 187
Packet Traffic off Network 188
Receive_Message — Datagram to Application Message 189
Sync Processing 211
Chassis Hardware 250
Equipment Rack 252

T

CMU/SEI-89-TR-18

Figure 38:
Figure 39:
Figure 40:
Figure 41:
Figure 42:
Figure 43:
Figure 44:
Figure 45:
Figure 46:
Figure 47:

VAX Pons to Testbed Ports Cross Reference
interrupt Summary

Memory Map

Flat Ribbon Cable Schematic

Kproc to Synchronization Bus Interface

P2 Cable Harness Schematic

Store Notation

Process Notation

Flow Notation

VMS Overview

254
259
260
261
263
264
282
283
284
359

CMU/SEI-88-TR-19

*

)

, By oy G5 my md 2 oW

List of Tables

Table 1:
Table 2:
Table 3:
Table 4:

Kernel Message Formats
Synchronization Message Formats
Initialization Message Formats
Tool Interface Message Formats

285
286
286
286

o vl Wy N WS N D o w D oD WD N U pE vt wmy o el

CMU/SEI-89-TR-19

GR v Wy B N R YR NS U E1 W W) By W B Wl W e N

Kernel Architecture Manual

Abstract: This document contains the detailed design description of the Kernel.
The overall system architecture and the rationale for it are presented as relevant
to both the application (i.e., the external view of the Kernel) and the Kernel
maintainer (i.e., the internal view of the Kernel). This document presents the
algorithms and data structures needed to implement the functionality defined in
the Kernel Facilities Definition. This document also contains an in-depth
description of the communication protocol used by the Kernel, both the network
software and hardware that compose the DARK testbed at the SEI, and a detailed
enumeration of all compiler dependencies exploited by Kerne! software. This
document is geared toward engineers responsible for porting and maintaining the
Kernel and engineers requiring detailed information about the internals of the
Kernel.

l. Overview

1. Introduction

Part | of this document describes the architecture of the 68020/TeleSoft TeleGen2 version of
the Distributed Ada Real-Time Kernel (DARK). This description is divided into the following
parts:

e Overview: provides a top-level architectural view of the Kemel software and
hardware.

e Application Interface: describes the design of the user-visible portions of the
Kernel. The user invokes Kernel operations via this interface (found in Part I1.)

s Core Kernel: describes the design of the internal packages of the Kernel. These
packages implement the functionality of the primitives, but are not visible to the
user. The internal Kernel packages are described in Part lll.

o Commurication Subsystem: describes the design of the software portion of the
communication network impiemented for the DARK testbed (found in Part IV).

o General Utilities: describes the design of the general, internal support
packages used by the Kernel (found in Part V).

» Target-Specific Utilities: describes the design of the target-specific, internal
support used by the Kernel (found in Part V).

¢ Debug Utilities: describes the testing and debugging support packages used in
implementing the Kernel (found in Part VIi).

* DARK Testbed: describes the target hardware configuration on which the
software described in this document depends (found in Part Vill).

CMU/SE!I-89-TR-19 1

¢ Ada Compiler Dependencies: describes the interface to the Ada compiler of the
Kernel (found in Part IX).

The packages discussed in this document are all described in the same manner:

e A stylized picture showing the exported types, operations, and exceptions for
the package, as illustrated in Figure 1.

- — - " - - - —— -

- - —— - - - - -

|

|

|

|

]

e e e L L + I
| Exported Procedure/Function { {
P e e e E e s e — .- —————- - - + |
| |
------------------------------- l
< Exported Exception > {
------------------------------- |
| |

D e et +

Figure 1: Stylized Package Template

¢ A general discussion of the package.
» For each visible entry in the package and each major internal object of the
package:
1. General remarks about the object.
2. An invocation sequence (where appropriate).

3. PDL. In the PDL, italic font is used to denote abnormal returns or
blocking conditions.

Some of the packages will contain data fiow diagrams (DFD) illustrating the functioning of
the package in the overall system context. The notation used in these diagrams is
explained in Appendix A.

1.1. Definition of Terms

The following terms and their definitions are intended to clarify their meaning and identify
how they are used in the context of this document.

DARK hardware. All of the hardware equipment used to build the processor nodes
and ring network.

Datagram. The basic unit of communication between a Kproc and an Nproc at the ISO
Data Link layer. A datagram contains an application or Kernel message that is
transmitted to another process.

DARK testbed. Testbed for short; comprises all of: DARK hardware, host computers,
and terminais.

2 ' CMU/SEI-89-TR-19

iy A By Gn by 4 B A NE By Ay by v e aum s Y e

Host system. Comprises uVAX-ll computers; used to download executable images to
the nodes and debug Kernel and applicaticn code online.

Kernel processor. Kproc for short; one of two processor boards located on a
processor node. It executes the Kernel and application processes and provides all of
the computing resources for the node.

Network processor. Nproc for short; one of two processor boards located on a
processor node. It has been programmed and configured to operate as a network port
on the ring network.

Packet. The basic unit of communication between Nprocs at the ISO Physical layer.
Each packet comprises 32 bits of information: 8-bit sender address, 8-bit receiver
address, and 16 bits of data. The Nproc breaks datagrams into packets for transfer
across the DARK network.

Processor node. All the hardware components co-located in a single VME chassis to
provide the functionality of a single part of a distributed processor system. It includes a
parallel interface, two processor boards, shared memory board, and chassis hardware.
The term node is synonymous with processor node.

Shared Memory. That memory in a processor node provided by the shared memory
board. It is accessible by both the Nproc and Kproc, and is separate from the local
memory on each processor board.

CMU/SEI-89-TR-19

2. Software Architecture Overview

The detailed architecture of the Kernel is presented in the parts that follow. This chapter is
an overview and rationale for the Kernel software architecture.

When viewed as a single entity, the Kernel's context diagram looks like that shown in Figure
2. This shows that the Kernel interfaces with four external entities:

1. Application

2. Event timer

3. Communication subsystem
4. Real time clock

Decomposing the context diagram one level (shown in Figure 3) reveals that the Kernel is
comprised of five major areas.

1. Application interface

2. Time keeper

3. Datagram management
4. Clock interface

5. Core Kemel

The Application Interface is the functionality exported by the Kernel to the user. These
packages are shown in Figure 4 as windows extending into the Kernel (the use of this
interface is characterized in [KUM 89]). The packaging structure shown in Figure 4 was
arrived at by applying the following design goals:

1. Closely related functions grouped together

2. No cross dependencies between user visible packages

a. to allow deletion of unneeded functionality
b. to allow selective replacement of functionality

3. Common types extracted into support packages
4. Conditional compilation flags to control Kernel-generated exceptions
5. Generics used to control compilation flags and tailorable parameters

Each of these packages is discussed in more detail in Part |l.

The Clock interface, Time Keeper and Core Kernel represent the working part of the
Kernel. These packages are shown inside the black box of Figure 4. These packages are
structured to meet the following design constraints:

1. isolation of the compiler-dependent parts, to enable rehosting the Kernel on
different compilers.

2. Isolation of hardware-dependent parts, to enable rehosting the Kernel on
different target configurations.

4 CMU/SEI-89-TR-19

Application

T
I Primitive
|Invocation

Clock Interrupt
Real | . T~ Timer Control _

. Time of Day - Event
Time Kernel Timer Interrupt Timer
Clock Clock Control | = [4— — — —'—

.< —————
Communication | Communication
Interrupts | | Primitive
| invocation
L
Communication
Subsystem
Figure 2: Kernel Context Diagram
CMU/SEI-89-TR-19

| Primitive
Invocation

Application
Interface

Timer Controly,

Core
Kernel

Timer Interrupt
Clock Control
- e e

Datagram
Management

Communication {Communication
Imerrupts| Primitive
invocation

L

Figure 3: Kernel Level 1 DFD

6 CMU/SEI-89-TR-19

.
---x------‘--

on of iy 2 G En @n OE U an W

3. Isolation of the Scheduler, to allow different scheduling regimes to replace that
provided by the DARK project.

4. Isolation of network initialization, to allow for different network startup schemes
to replace that provided by the DARK project.

5. Selection of a small set of key data structures with which to drive the
execution of the Kernel. :

These packages are discussed in Part lil.

The final piece is Datagram Management. This package is also inside the black box of
Figure 4 and is the Kernel's interface to the communication subsystem (thus isolating both
the application and the Kernel from the network). This piece is discussed in Part V.

CMU/SEI-89-TR-19 7

Support
Packages

I

Processor
Management

Communications
Management

T

Alarm
Management

|

Process Attribute
Readers

Process Attribute
Modifiers

1

Process
Managers

Time
Management

Semaphore
Management

1T

Interrupt
Management

-

Timeslice
Management

] User Kernel
Key:

Figure 4: User View of the Kemnel

Specific
Utilitigs

Time
Keeper

Process

Index Table

Process
Table

Network

Configuration
Table

Intermnal
Process

Timeslice
Parameters

Tool Interface

Interface Kernel User
Package Internals visible via
Tool Interface

.

CMU/SEI-89-TR-19

Gy Gy & = s i w G & W = W

3. Hardware Architecture Overview

The DARK prototype has been developed for a MC68020 microprocessor target. The
prototype hardware configuration uses two processors per node on the network. One
processor is designated the Kernel processor (Kproc); while the other is designated the
network processor (Nproc). The Nproc is responsibie for low-level communication across
the network; the Kproc is responsible for all other Kernel operations, including execution of
the application code.

All communication between nodes in the network is via datagrams. One implication of
datagram-based communication is that the network is not responsible for verifying the
correct or complete delivery of messages between processes; if a datagram cannot be sent
(or received) by a node in the network due to network overload or data transmission errors,
the datagram is discarded, and the sending (and receiving) processes receive no notification
of the message's loss. It is the application engineer’'s responsibility to build any needed
message validation and verification into the application code.

Parts IV and VIl describe all the software and hardware necessary to implement the
datagram communication model described.

3.1. The DARK Testbed

This section presents a high-level overview of the system issues of the DARK testbed; more
details can be found in Part VIII.

The DARK testbed was set up with the following goals:

» Use a validated Ada compiler.

» Exemplify a typical loosely coupled distributed system.

« Facilitate obtaining performance measurements.

» Use hardware components compatible to those already in use at the SEI.

The DARK testbed comprises a set of distributed processor nodes connected by a network.
Each node has two 68020 processors: the Kproc for running the application and the Kernel,
and the Nproc for handling node-to-node communication across the network. Using dual
processor nodes allows the communication needs to be isolated from the processing needs
of the node and simulates a number of real world applications where the lowest level of
interprocessor communication is handied by special hardware.

3.1.1. Target Processor

The Motorola 68020 microprocessor is used in both industry and military systems for a
variety of general-purpose and specialized applications, including embedded and distributed
real-time systems. It is a popular choice for hardware designs requiring fast, efficient, and
compact processing.

CMU/SEI-88-TR-19 9

There are several Ada cross compilers and other development tools available for the
MC68020. The MC68020 is available on several board formats, such as Multibus Il and
VME bus.

3.1.2. VME Bus

The DARK testbed is built around the VME board format. VME is a standard board
supported by many third-party vendors. A large variety of processors and peripheral
devices are available in this format. The VME bus specification document defines the VME
bus, which specifies the type of board connector, number, name, and type of control and
data signals available at the connector; and the protocol for interfacing to other devices,
including interrupts, and read/write accesses.

The VME bus is used in the DARK testbed to couple together the Nproc, Kproc, shared
memory, and two parallel interface boards of one node.

3.1.3. Host Computers

Four clustered pVAX-Il computers operate as host to the DARK target processors. They are
used for various phases of software development, including creating and editing Ada source
modules, compiling, linking, loading, and debugging.

The TeleSoft TeleGen2 Ada development system (see [TeleSoft 88]) and support tools are
used for compile, link, loading, and testing of DARK software.

The various activities for programming and testing the target software can be carried out on
the host remotely over the SE| Ethernet at user terminals.

Each processor node is connected, either directly or through a switch, to a host computer by
two serial lines (see Figure 5). These ports are for downioading and debugging executable
images.

3.1.4. Distributed Network

The distributed network consists of processor nodes and the data path connecting them.
The DARK network and host system are shown in Figure 6. The network is a ring with four
nodes, providing a computing resource for application use.

3.2. Network Processor

The Nproc is a VME board with a Motorola 68020 microprocessor running at 20MHz, as
shown in Figure 7.' It is the part of a processor node that manages network communication
for the Kernel.

"h is identical to the Kprac for ease of replacement and maintenance.

10 CMU/SEI-89-TR-19

User Workstation User Workstation User Workstation
SE! Ethernet
|
@ Host D @ Host C Host B —@
Node 0 Node 1 Node 2 Node 3
@ |
SEl Ethernet

Figure 5: Host Configuration

User Worlguation

Usar Workstation

SEl Ethemmet

DARK A

DARK B

DARK C

DARK D

Figure 6: Distributed Network

CMU/SEI-89-TR-19

"

Shared

Parallel 11O

Nproc

Nproc to shared memory, parallel In

and Out data flow

VME bus

e

DA N
., N\
l\A~Q\ oS re?
" ‘. .

N
.

.\

Py
o
[,
e lllll
E L0
ﬁ NN N \ Y
wﬁ' 4_/. N L A N
. AR N e O AR N
AN [SR PR
um. LT
,b LTt .
N\, . \ N
NN N N
Ny N
e tteasetacnnsanncantannasts

Network Processor Hardware

Figure 7

CMU/SEI-89-TR-19

12

The Nproc has two serial ports connected to the host system. One is for debugging; the
other is for downloading executable images. These ports are connected to one of the host
machines.

The Nproc uses interrupts to communicate with the Kproc during message handling. In the
current DARK implementation, there is no need for the Kproc to interrupt the Nproc,
although the hardware configuration does permit it.

3.2.1. Nproc-to-Nproc Interface

The ring network, although circular in topology, is not continuous and relies on the operation
of the Nprocs to keep information moving. The network is formed by a series of
Nproc-to-Nproc interfaces. A packet, the basic unit of information, is passed from
Nproc-to-Nproc until it reaches its destination. The purpose and content of the packets are
discussed in Part IV.

Figure 8 shows the components of all four nodes and how they are connected. Each block
corresponds to a VME board. This diagram is the basis for the following discussion.

The network hardware consists of Nprocs, parallel interfaces (ports), and flat ribbon cable
segments. Each of these hardware components is discussed in more detail in Chapters 2
and 11, respectively. Figure 9 illustrates how they are connected.

For example, In a single transfer, the sending Nproc moves four bytes (one packet) of data
from shared memory to the registers of the out parallel port. The port, in turn, transfers the
register data to the cable segment that is connected to another (in) paralie! port. The data
are captured by the in parallel port and eventually transferred by the receiving Nproc to
memory. What happens to the packet after that depends on whether or not it has reached
its assigned destination. These software operations are discussed in Section 7.4.

The interface between the Nproc and the in and out parallel ports is interrupt-driven. When
a packet is received at the in paralle! port, the port raises an interrupt that is serviced by a
special interrupt handler on the Nproc. When a packet is successfully transferred to an out
parallel port, it too raises an interrupt. In this case, however, the interrupt is to indicate the
port is no longer busy.

The parallel ports used provide a double buffering capability, thus permitting faster
operation. Because of this feature, the in parallel port is capable of latching a second
packet before the first has been transferred to memory by the Nproc, and the out parallel
port can accept a second packet to output before the first has been completely accepted by
the receiver on the other end of the interface. :

Two pairs of handshake control lines and special read/write sequences make up the
protocol for Nproc-to-Nproc transfers. A 32-bit packet is moved to the out paraliel port in
4-byte pieces. The hardware is designed to manipulate the handshake lines automatically
when the bytes are written into the respective registers in a specific order. The result of

CMU/SEI-88-TR-19 13

Network cable
segment

Fmmmm - -
\ |
| |
| I
| ouTy,
| SM |
l !
) N),
| |
] N]
\ |
|

Network cable
segment

R5-485/422
Serial line

SM N
VME
IN ouT Network cable
\ segment
K
SM
N
VME
Network cable
OUr IN segrment
Legend
VME
K - Kproc
SM - Shared memory
SM N N - Nproc
IN - Inparallel port
OUT - Out parallel port
VME - VME bus
L - Node

-/ - Network flow

Figure 8: DARK Network Overview

14

CMU/SEI-89-TR-19

15

Network cable segments between

nodes

»
=
0
w
2
>

Paralls! VO
-to-Node Connections

Node

o\
.

.

.

..

.~

Figure 9

ot
-
'
.
.
-
-

LT LONN LT LS N,

. » . . .
f A e . oot SEXN
sppprrrrresens. Nosssss00s0s000 . srssssssrssies \R o s sessesspesed

PN b s AR SR
Y .A\ A \ 4.f ,....Av A AN RN SERON /.f \ Y
J ../;::: —/ LY oy - .t/. .
R VNN § W Mgt T e B, eanl
% Yooy S N, e

W4

5"

.

\

Shared
Kproc memory Nproc

. e “’ o a. N ‘Y AN \ o Ny “ RSN .
J L a.f y L. . 1./ . \ . ff ', ., 4./ » .o .
A . \ .
/ . . / ’\ (AN g \ N e .
L L PP § Nesnssnaasnnassl Sstianansaasant Sisssasanasnan”

CMU/SEI-89-TR-19

_ E

doing so correctly is that the handshake signal causes the data to be latched, and in turmn an
interrupt is generated on the receiving end. There are two sets of handshake lines between
parallel ports: one for the low 16-bits and one for the high 16-bits. They both operate the
same, the only difference being that the high-order set is involved in generating the
receiving port’s interrupt after the last byte is moved into the port.

3.2.1.1. Parallel Interface

The parallel interface boards provide a 32-bit data path between two adjacent nodes in the
ring network. Each node requires two of these interfaces, as shown in Figure 10. One is
designated the in port and the other the out pont.

Shared Parallsl
Kproc memory
E g
RN
S . ~
I — . 2
i — VD ——
7 NGy i v
MR 7 : >
7/ ': . : O
. N {.-" .——.3—5
.,: . :: Naaat
R 1
AN e »
./ . 7 N :
7 - . 7 :
L g , J
. K ya
rd Ke - .
P S . T
R NERAP P
N v ¢ Nproc data flow to and from
i v parallel IO boards

Figure 10: Parallel interface Hardware

3.3. Kernel Processor

The Kproc is a VME board with a Motorola 68020 microprocessor running at 20MHz, as
shown in Figures 11. It is that part of a processor node where the Kernel and application
execute.

3.3.1. Kproc-to-Nproc interface

The interface between the Kproc and Nproc is established using the VME bus, interrupts,
and shared memory accesses. Both processors are part of the same node and are
attached to the same VME bus (see Figure 8), which permits one processor to issue an
interrupt to get the attention of the other.

When data need to be exchanged between the Kproc and Nproc, such as a message being

16 CMU/SEI-89-TR-19

hared
Kp?@@ ieanr\zry Nproc Parallel VO
Ve 3

R v ~

Kproc data flow to and from
/ shared memory

Figure 11: Kemel Processor Hardware

sent or received, the Kproc writes into the shared memory to send, and reads from the
shared memory to receive (see Figure 12). The Nproc issues an interrupt, which is
recognized and serviced by the Kproc, to indicate that at least one message has been
received and has been placed in shared memory. Chapter 6 contains a more detailed
discussion of the Kproc-to-Nproc interface.

Sharsed
Kproe mMeMmOry Npree
- Interrupt < ,"
K« 7 4/
o/ V4 :’

A
o

/ Legend
/ Local to shared memory access

«a—3— Nproc to Kproc interrupt

N\

Figure 12: Kproc-to-Nproc Interface

CMU/SEI-89-TR-19 17

3.3.2. Time Synchronization Bus Interface

The Kernel uses a serial interface connected to all of the Kprocs to implement time
synchronization. Port A of each Kproc is connected to this serial interface, called the
synchronization (or sync) bus.

Normally, serial interfaces are used in point-to-point communications, such as RS-232C.
However, if the line drivers for the serial interface are RS-485/422 compatible, such as those
used for Port A, more than one receiver (called a slave) can be serviced by a sender (called
the master). This capability is used to essentially "broadcast” the notification to synchronize
time across all the nodes.

initially, the Kernel configures all the Kprocs as slaves. When the application calls the
synchronize time primitive, the Kernel asserts Port A of that Kproc as master and sends the
new time information to all the other nodes on the sync bus. The interrupt-driven software
on the slave Kprocs accept the new time and continue processing.

3.3.3. Non-Kernel Device

The non-Kernel device may be connected to the network and may communicate with other
portions of the application using the DARK network protocol. This requires that the
non-Kernel device be able to send and receive the 32-bit packets used to communicate via
thé network. For a non-Kernel device to communicate with a Kernel device requires that the
non-Kernel device append to the start of any message the 8-word datagram header (shown
in Figure 13).

All of the fields must have the values shown in Figure 13, with the following fields specified
by the non-Kerne! device:

1. Message length: size of the message in bytes
2. From node addr: the network address of the non-Kernel device

3. To node addr: the network address of the Kernel device receiving the
message

This is the minimum information needed by the Kernel on the receiving node (to insure the
message is correctly routed). The exact format of a datagram is discussed in Part V.

18 CMU/SEI-89-TR-19

1516 31

message length 0

0

0
from node address
to node address

0

0

0

Figure 13: Non-Kernel Message Header

CMU/SEI-89-TR-19

19

CMU/SEI-89-TR-19

Il. Application Interface

This part defines the user view of the Kernel; the user invokes Kernel operations via calls to
this interface. The packages in this section parallel the primitives and requirements
described in [KFD 89). Please refer to the corresponding sections in the [KFD 89] for
additional background information.

CMU/SEI-89-TR-19 21

1. Alarm Management

T e et +

| |

e e bl D DLl DAt + |
| Set Alarm | |
e el e e it + |
| |
et L + |
| Cancel Alarm) |
e et L Lt it L DL D DD Lt + |
f |
............................... |
< Alarm Expired > |
...............................]
| |
e LR L L B L +

For a description of the functionality of this package, see Kemne/ Facilities Definition, Chapter
22. The requirements satisfied by this package are found in the Kernel Facilities Definition,
Chapter 13.

The functioning of alarms is straightforward. Setting an alarm causes a countdown timer to
be initiated: when this timer reaches 0, the alarm_expired exception is raised in the setting
process. Three situations exist:

1. If the process is executing when the alarm expires, the exception is raised by
the Scheduler immediately after the alarm expires.

2. If the process is blocked or suspended when the alarm expires and its alarm
resumption priority is higher than that of the current running process, then the
Scheduler preempts the current running process and immediately raises the
alarm_expired exception in the alarmed process.

3. If the process is blocked or suspended when the alarm expires and its alarm
resumption priority is lower than that of the current running process, then the
Scheduler does not immediately raise the alarm_expired exception. Rather,
the Scheduler raises the alarm_expired exception sometime later, when .he
process’s alarm resumption priority allows it to become eligible to run.

Figure 14 illustrates the key facets of Set alarm. In this scenario, there are no other
pending events.

22 CMU/SEI-89-TR-19

Process
Table

5 Event
Timer

Time Event
Queue

—h

. The application invokes set_alarm.

. The current alarm state of the process is read from the process_table and
error checking is performed.

3. An insert_event request is made of the time_keeper.

4. The alarm_event is enqueued in the time_event_queus.
5. The event timer is configured for the alarm.
6
7
8

[\

. The process table is updated to reflect the pending alarm event.
. The alarm event's internal identifier is retumed.
. Control returns to the application.

Figur2 14: Set Alarm

.

CMU/SEI-89-TR-19

1.1. Set Alarm

1.1.1. Interface

set_alarm (alarm time
resumption priority)

1.1.2. PDL

If called from an interrupt handler then
raise illegal context
Else
If an alarm event is pending then
Ramove the pending alarm event
Set the pending exception name to resetting alarm
End if
Insert the new alarm event
End if

1.2. Cancel Alarm

1.2.1. Interface

cancel_plarm

1.2.2. PDL

If called from an interrupt handler then
raise illegal context
Else
If an alarm event is pending then
Remove the pending alarm event
Else
Raise no_alarm set
End if
End if

24

CMU/SEI-89-TR-19

L----------

2. Communication Management

e L DL +
| |
D e it + |
| Send Message i |
D it + |
| |
D et bt b + |
| Send Message and Wait | |
it D + |
] |
e e L L L L P Tt + |
| Receive Message | |
D bt D D + |
i |
it bl + |
| Allocate Device | {
it et b Dt b + |
| |
B et e L e LTt +

For a description of the functionality of this package, see Kernel Facilities Definition, Chapter
19. The requirements satisfied by this package are found in the Kernel Facilities Definition,
Chapter 10. This package contains all of the communication primitives needed to send and
receive messages.

The send primitives support acknowledged and unacknowledged sends. The
Send_Message primitive is non-blocking and is considered an unacknowledged send. |t
does not generate a response from the receiving Kernel when the receiver receives the
message. The Send_Message And_Wait primitive, on the other hand, is considered an
acknowledged send and can biock. It solicits a response from the receiving Kernel when
the message is received by the receiver. As with all blocking kernel operations, a timeout
can be specified so the application can control the length of time it is blocked.

The Receive_Message primitive blocks if there are no messages in the process' input
message queue. Here again, the calling process can specify a timeout to control how long it
is blocked. If an acknowledgment is required for a received message then the Kemels take
care of it.

Local optimization is performed when the receiving and sending processes are on the same
node. When a call to Send_Message or Send_Message_And_Wait is made the node of the
sender and receiver are compared. If the nodes are not the same then the message must
be sent over the network to the proper node. However, if the nodes are the same then the
network and the associated overhead can be avoided. The amount of processing saved
during local optimization will depend on whether the receiving process is waiting or not.

The following discussion deals with the different situations that are taken into consideration
during send and receive (message) processing. Except where explicitly stated, all the
situations apply equally for remote and local sends.

CMU/SEI-89-TR-19 25

The actions taken by the communication management to successfully send and receive a
message will depend on the form of the send call and what situation the receiving process is
in when the message arrives. The foliowing paragraphs describe the different situation that
affect the processing of a message.

When a message is sent the receiver is specified. Normally, the receiver will be in one of
several possible situations:

1. Receiver is not waiting
2. Receiver is waiting with no messages queued for it
3. Receiver is waiting with at least one message queued for it

The actions that result in each of these cases will depend on whether it is an acknowledged
or unacknowledged send. And furthermore, if it is an acknowledged send the actions will
depend on whether the specified timeout is:

1. Not specified,
2. Negative and zero, or
3. Greater than zero.

First, consider the state of the receiver when the message arrives. If the receiver's current
pending activity is not Receive_Pending then it is not waiting at a Receive_Message call.
On the other hand, if the pending activity is receive_pending then it will be either blocked on
or unblocked. Waiting and blocked means no other message have been received that
would have cause the receiver to be unblocked (changed to suspended). Therefore, the new
message would cause the receiver to be unblocked. Keep in mind that even though a
receiver is unblocked when a message is received it may or may not resume execution right
away depending on its resumption priority relative to the currently running process.

if the receiver is waiting but not blocked then that means it has apparently been unblocked
already due to a previously received message and it can be assumed there is at least one
message on its msg queue.

In the cases where the receiver is not waiting or it is waiting but there are messages aiready
queued for the receiver, the message can't be copied directly into the receiver's buffer. The
copy will have to take place later when the receiver dequeues the datagram from its msg
queue. Otherwise, if the receiver is waiting and no other messages are in the queue the
message can be copied directly into the receiver's bufter.

Local optimization takes place in varying degrees, depending on the exact situation. Here
are two important optimizations that are possible:

1. Copy sender's message directly into the waiting receiver’s buffer.

2. Pass a datagram directly from send processing to receive processing.

The specified timeout value in an acknowledged send dictates the response from the
receiving Kernel. The calling application specifies a timeout vaiue less than or equal to zero

26 CMU/SEI-89-TR-19

to be NAKed immediately if the receiver is not ready to receive the message when it arrives.
It specifies a timeout value greater than zero to wait for a certain amount of time before
being NAKed. And, finally, it does not specify a timeout if it is to wait forever for the receiver
to receive the message. Timeout values can be specified as an elapsed or epoch time.

Here is a summary of the send primitive cases, the different forms of the acknowledged and

the results:

Desired Reasult

Infinite wait

No wait

Wait until X

Wait for X

Send Message form(s) Timeout Value
Not applicable
Send_Message_And_Wait(...)

X <=0
Send_Message_And_Wait (...Timeout_At => X....)
Send_Message_And_Wait (...Timeout_After => X,...)

X > Current time
Send_Message_And_Wait (... Timeout_After => X,...)

X>0
Send_Message_And_Wait (...Timeout At =>X,...)

CMU/SEI-89-TR-19

27

2.

1. Send message

2.1.1. Invocation

send message (
recaiving process identifier,
message tag,
message length,
message text)

2.1.2. PDL

2.

If the tool interface is enabled
Log the message attributes for this process
Log the message contaents for this process
End if

Check to see according to local information if receiver has been
daclared and is still aliva.
If receiver is not ok then
call scheduler
Else
If receiver is the same node as sender then
do local optimization
Else
Send a process datagram to receivar.
Return to caller without blocking
Endif
Endif

2. Send Message and Wait

During acknowledged sends, a timeout event is set on the receiving node as opposed to the

se

nding node. If the timeout expires, the receiving node's Kemnel sends a negative

acknowledgment response. Otherwise, it will respond with a positive acknowledgment when
the receiver issues a Receive_Message and the message is copied into its working space.

2.2.1. Invocation

or

send message_and wait (
receiving process identifier,
message tag,
message length,
message text,
resumption priority of sender)

send message_and wait (
receiving process identifier,

28 CMU/SEI-88-TR-19

message tag,

meassage length,

message text,

timeocut aftex,

resumption priority of sender)

or

procedure send massage_and wait (
receiving process identifier,
message tag,
message length,
message text,
timeout at,
resumption priority of sender)

2.2.2. PDL

If the tool interface is enabled
Log the massage attributes for this process
Log the message contaents for this process
End if
Cheack to see if receiver has been declared and
is still alive and
call has not bean made from an interrupt handler
If receiver is not ok then
Call scheduler
End if
If receiver is local (on the same nods as the) sender then
Indicate sender has a SEND WITH ACKNOWLEDGMENT PENDING
Do local optimization
Else the receiver is on a remote node
Indicate sender has a SEND WITH ACKNOWLEDGMENT PENDING
Send a process datagram with the sender’s message to the
receiver on a remote node
Block the sender
End if

2.3. Receive Message

2.3.1. Invocation

recaive_message (
sender of message,
message tag,
message length,
message buffer,
buffer size,
resumption priority,
massages lost)

CMU/SEI-89-TR-19

or

receive message (
sender of massage,
message tag,
message length,
message buffer,
buffer size,
resumption priority,
timeout after,
massages lost)

or

procedure receive message (
sender of message,
massage tag,
message length,
message buffer,
buffer siza,
resumption priority,
timeocut at,
messages lost)

2.3.2. PDL

Perform error check for:
ILLEGAL CONTEXT FOR CALL
If there is a datagram on the process’ msg queuas then
If datagram has been optimized then
Do local receive optimization
Call the scheduler
Else datagram is from a remote node
Do copy action that includes copying message from datagram
to receiver’'s buffer, and clearing any timeout event
and sending an acknowledgment for acknowledged sends
Call scheduler
End if
Else no datagram is available
Store the receiver’s buffer address and size in the process
table in case the sender uses local optimization
If a receiver timeout is specified then
Set the timeout type
Try to set a timeout event
Perform error check for no timeout event set
End if :
Loop

If there is no datagram available on the process’ msg queue then

Set the receiver’s pending activity to RECEIVE PENDING
Call the Scheduler to Block the receiver

Elsae a datagram is available
If the tool interface is enabled

30 CMU/SEI-89-TR-19

Log “he message attributes for this process
Log the message contents for this process
End if
If datagram has been optimized then
Do local receive optimization
Else datagram is from a remote node
Do copy action that includes copying message from datagram
to receiver’s buffer, and clearing any timeout event and
sending an acknowledgment £for acknowledged sends
End if
Exit
End if
End loop
Call Scheduler

2.4. Allocate Device

2.4.1. Invocation

allocate_device_receiver (
pid of process to receive the non-Kernel device maessages,
device id of non-Kernel device originating the messagas)

2.4.2. PDL

If the indicated device is a Kernel device then
raise no such device
Else
Log the receiver in the NCT for the non-Kernel device
If this allocation is replacing a previous allocation then
raise replacing old allocation
End if
End if

2.5. Copy Message

2.5.1. Invocation

copy_message (
datagram to copy,
sender of the datagram,
massage tag,
massage length,
message buffer,
buffer size,
massages lost)

CMU/SEI-88-TR-19 k)

2.5.2. PDL

Set out parameter from datagram header information
Perform exror checks for:
RECEIVER BUFFER TOO SMALL
Copy message from datagram to buffer to receiver’s buffer
Clear receiver’s overflow status
If acknowledge send and sender has a SEND WITH ACK PENDING then
Send a kernel datagram to acknowledge sendex
Clear any pending activity for the sender
End if
Delete datagram from receiver’'s msg queue
Free up the datagram
Clear any pending activity for the receiver

2.6. Do_Local_Send_Optimization

2.6.1. Invoéation

do_local send optimization(
receiver of message,
operation,
message tag,
message length,
massage text,
timeout,
resumption priority)

2.6.2. PDL

If receiver is waiting and blocked then
Allocate an empty datagram
If no is datagram available then
If massage is an acknowledged saeand then
Sat MESSAGE_NOT_RECEIVED exception
End if
If not called from an interrupt handler then
Call Scheduler
Else
return
End if :
Else a datagram is available
Set the datagram header fields from input parameters
Indicate LOCAL OPTIMIZATION is taking place

Indicate the sender’s massage has already been copied to

the receiver’'s buffer
Pexform error check on receiver’'s buffer size
Copy from sender’s buffer to receiver’'s buffer
Clear any queue overflow status
Clear any pending activity for the sender

32 CMU/SEI-89-TR-19

Enqueue the datagram
Call Scheduler to unblock the receivexr
If not called from an interrupt handler then
Call Scheduler
Else it was called from interrupt handler
return
End if
End if
Else the the receiver is not waiting and blocked then
Perform message queue overflow error check
If timeout is less than zexro or call is a Send Message then
Allocate an empty datagram
If no datagram is available then
If Send_Message And_Wait was issued then
Clear sender’s pending activity
Set MESSAGE NOT RECRIVED exception for the sender
call Scheduler”
Elge
call Scheduler
End if
Else a datagram is available
Set fields of the datagram header with input parameters
Indicate LOCAL OPTIMIZATION is taking place
If Send Message_And_Wait was issued then
Indicate receiver needs to copy the message from
sender’s buffer to its buffer
Set the sender’s buffer address in the datagram for
receive message processing
Enqueue the datagram on the receiver’s msg queue
Indicate the sander’s pending activity as a SEND
WITH ACKNOWLEDGMENT PENDING
Call Scheduler to block the sender
Else send issued with a Send Message
Indicate receiver needs to copy the message from the
datagram’s buffer
Copy meassage from sender’s buffer into datagram’'s
buffer
Enqueue the datagram on the receiver’s msg queue
End if
End if
Elsif the timeout is equal to zero then
Clear any pending activity for the sender
Set the MESSAGE NOT_RECEIVED exception for the sender
Call Scheduler with the resumption priority
Else the timeocut is greater than zero
Allocate a zero length datagram
If no datagram is available then
Clear any pending activity
Set the MESSAGE_NOT RRCRIVED for the sender
Call Scheduler with the resumption priority
Else a datagram is available

CMU/SEI-89-TR-19

Sat datagram header fields with input parameaters

Indicate LOCAL OPTIMIZATION is taking place

Indicate the receiver needs to copy the message £from

the sender’s buffer

Set the sender’s buffer address in the datagram for

receive message processing

Try to set a timeout event

If the timecut has not expired (event set ok) then
Save the queue name and datagram pointer so the
datagram can be removed if the timeout expires
Set the sender’s pending activity to
SEND WITH ACKNOWLEDGMENT PRNDING
Enqueue the datagram on the receiver’s msg queue
Call Scheduler to block the sender

Else the timeaout has expired (no event set)
Clear any pending activity for the sender
Set the MESSAGE_NOT RECEIVED exception for the sender
Free up the datagram
Call Scheduler with the resumption priority

End if

End if
End if
End if

2.7. Do_Local_Rcv_Optimization

2.7.1. Invocation

do_local_ rcv_optimization(
datagram to receive,
sendexr of message,
massage tag,
message length,
message buffer,
buffer size,
resumption priority,
timeout value,
has timaout,
messages_lost)

2.7.2. PDL

Set the out parameters, such as message tag, massage length, and
sender from the appropriate datagram header fields

Pexrform error checks for BUFFER TOO SMALL FOR MESSAGE

If COPY FROM THR SENDER'S BUFFER is required then
Using the sender buffer’s address passed in the datagram header
Copy message from sender’s buffer to receiver’s buffer

Elsif cOPY FROM THE DATAGRAM’'S BUFFER is required then
Copy message from datagram buffer to receiver’s buffer

34 CMU/SEI-89-TR-19

Else NO COPY IS NECESSARY
Do nothing

End if

If this is an acknowledged send and the sender has a SEND WITH

ACKNOWLEDGMENT PENDING and the MESSAGE ID match then

Acknowledge sender by clearing any pending activity for sender
Call Scheduler

Else no need to acknowledge
Do nothing

End if

Delete the datagram from the receiver’s msg gqueue

Free up the datagram

CMU/SE!-89-TR-19 35

3. Hardware Interface

This package encapsulates the basic Ada types in a form that is more transportable. Since
this is package is compiler and hardware dependent, the issues involved in this
encapsulation are discussed in Part IX with this package shown in Appendix E.

36 CMU/SEI-89-TR-19

&«

4. Interrupt Management

+ ———————————————————————————————————————
!
e P S P R +
| Rnable |
e e +
(
T +
| Disable |
b L T +
|
e e L L L L e +
| Enabled {
et it +
|
e e L L e PR e +
| Simulate Interrupt |
e et +
|
et e +
| Bind Interrupt Handler |
e e LR P R PR +
|
+ ———————————————————————————————————————

For a description of the functionality of this package, see Kernel Facilities Definition, Chapter
20. The requirements satisfied by this package are found in the Kernel Facilities Definition,

Chapter 11.

Note: in all cases, an "illegal interrupt" raises a CONSTRAINT_ERROR, since the parameter
(sub) type domain is the domain of legal interrupts. Thus, there is no explicit check for the

legality of an interrupt.

CMU/SEI-89-TR-19

37

4.1. Enable

4.1.1. Interface
Enable (interrupt name)

4.1.2. PDL

If the interrupt_owner in the interrupt table is not application then
Raise illegal interrupt

End if

If handler state in interrupt table is not bound then
Raise illegal interrupt

End if

Set intarrupt state in the interrupt table to enabled

Set interrupt’s entry in the Kernel interrupt vector to point to

the user-supplied interrupt handler

4.2. Disable

4.2.1. Interface

Disable (interrupt name)

4.2.2. PDL

If the interrupt_owner in the interrupt table is not application then
Raise illegal interrupt
End if
Set interrupt state in the interrupt table to disabled
Set interrupt’s entry in the Kernel interrupt vector to point to
the null interrupt handler

4.3. Enabled

4.3.1. Interface

Enabled (interrupt name)
return boolean

4.3.2. PDL

If the interrupt_owner in the interrupt table is not application then
Raise illegal interrupt

End if

Return the interrupt_state field of the interrupt table

38 CMU/SE!-89-TR-19

4.4. Simulate Interrupt

4.4.1. Interface

Simulate_intarrupt (interrupt namae)

4.4.2. PDL

If the interrupt_owner in the interrupt table is not application then
Raise illegal interrupt

End if

If the interrupt_ state in the interrupt table is not bound then
Raise illegal interrupt

End if

Set interrupt_ source in the interrupt table to internal
Increment interrupt nesting level
Begin atomic .
Perform an indirect call of the interrupt handler pointed
to by the interrupt’s entry in the interrupt table

Exception
when others =>
‘handle all exceptions, taking no action (to simulate the
effect of an unhandled exception in a real interrupt
processing)
End atomic

Decrement the interrupt_ nesting level
Set the interrupt source to be External
If the interrupt can preempt then
Schedule
Else
return to the callex
End if

4.5. Bind Interrupt Handler

4.5.1. Interface

bind_interrupt_ handler (interrupt namae,
address of interrupt handler procedure,
interrupt can cause procCess preemption)

CMU/SEI-89-TR-19 39

4.5.2. PDL

If the interrupt_owner in the interrupt table is not application then
Raise illegal_ interrupt
End if

If interrupt handler is already bound =>
Store new handler address in the interrupt table
Store new value for can_preempt in the interrupt table
Raise re-binding interrupt handler
Else
Insert interrupt name into interrupt table
Store handler address in the interrupt table
Store value for can preempt in the interxrupt table
Set handler state to bound in the interzapt table

If the interrupt can_preempt then
Call machine-dependent routine to bind a "slow" interrupt
Else
Call machine-dependent routine t¢ bind a "fast” interrupt
End if
End if

40 CMU/SEI-89-TR-19

5. Process Attribute Modifiers

D e e LT +
! |
R e ittt + |
| Die 1 |
et e e L e L L L L + I
| |
e e e L L + I
] Rill) !
e e DE LR L P T Ll + i
1 |
e et ittt + |
| Set Process Priority | |
o e e + |
) |
e e E L E L P LTt + |
| Set Process Preemption | {
Lt Lt e L b DD Dty + |
| |
R e + 1
| Wait | |
it + |
1 |
e e e e L +

For a description of the functionality of this package, see Kernel Facilities Definition, Chapter
18. The requirements satisfied by this package are found in the Kernel Facilities Definition,
Chapter 9.

CMU/SEI-89-TR-19 41

5.1. Die

5.1.1. Interface

Die

5.1.2. PDL

If called frxrom an interrupt handler then
Raise illegal_ context
End if
Purge message_queue
Release all claimed semaphores
Deallocate any non-Kernel devices assigned to this process
Schedule (new state => dead)

5.2. Kill

For a remote process Kkill, a special Kernel-to- Kernel message is formatted and transmitted
to the node hosting the process to kill. See Appendix B, Table 1, for the exact format of this
message.

5.2.1. Interface
Kill (process to kill)

5.2.2. PDL

If the process to kill is not dead then
If the process to kill is remote then
Send kernel datagram ("kill_message”)
Else
Remove process (process to kill) from tha scheduler
Purge message dqueue
Release all claimed semaphores
Deallocate any non-Kernel devices assgigned to this process
If the process to kill is the current_running process then
Schedule (new state => dead)
Elsge
If the tool interface is enabled
Log the process attributes for process being killed

End if
Remove_process (pid => process to kill,
new_state => dead)
End if
End if

Else
null. . .the process to kill is already dead
and there is nothing to do

42 CMU/SEI-89-TR-19

i

End if

5.3. Set Process Priority

Changing the priority of a process has been optimized to account for the following situations:

1. Setting the priority to its current value is a null operation.

2. Raising the priority of a process does not affect its eligibility to run; it remains
the current_running_process.

3. Lowering the priority of a process may cause it to be descheduled.

5.3.1. Interface

set_process_priority (new process priority)

5.3.2. PDL

If called from an interrupt handler then
Raise illegal context
End if

If there is no change in priority then
raturn
Else
Schedule (new priority => new procesc priority)
End if

5.4. Set_process_preemption

Changing the preemption of a process has been optimized to account for the following
situations:

1. Setting preemption to its current value is a null operation.

2. Setting preemption to disabled does not reschedule the process; it removes
the current slice event, so the timeslice doesn't expire.

3. Setting preemption to enabled simply calls the Scheduler (which selects the
highest priority process — if it is the invoking process, it automatically inserts a
slice event). Consequently, setting process preemption to enabled may cause
the calling process to be descheduled.

5.4.1. Interface

Set_process_preemption (new process prcemptién)

CMU/SEI-89-TR-19 43

5.4.2. PDL

If called from an interrupt handler then
Raise illegal context
End if

If there is no change in preemption then

return
Else if the current preemption is enabled and
the new preamption is disabled then

If tima slicing is enabled then
Remove_event (timeslice)
End if
Set the preemption to disabled
Else...the current preemption is disabled and
the new preemption is enabled
Schedule (new_preemption => enable)
End if

5.5. Wait

This primitive has been constructed to have the following semantics:

1. All calls to wait cause the Scheduler to be invoked.
2. If the wait is for a future time, the process blocks until that time arrives.

3. If the wait is for a non-future time, no wait is done, but the process
relinquishes control of the processor and may be descheduled.?

5.5.1. Interface

Wait (until epoch time,
resumption priority)

or

Wait (for elapsed tima,
resumption priority)

5.5.2. PDL

If called from an interrupt handler then
Raise illegal context

End if

Insert_event (wait_ timeout)

If the event_identifier is null then (waiting for a non-future time)
If there is no change in priority then

2Thus, if two processes of equal priority need to execute in a co-routine like paradigm, tor example, a wait with
a time of 0 may be usad to switch between the co-routine processes, see Appendix E of [KUM 89].

44 CMU/SEI-89-TR-19

Sl T & o o 2 T B = e

Remove_process (current_running process)
end if
Schedule (new_priority => resumption priority)
Else...the wait is for a future time
Schedule (new_priority => resumption priority,
new_state => blocked)
End if

5.6. Purge Message Queue

5.6.1. Interface

purge_message queue (process identifier)

5.6.2. PDL

Locate the message queue of the process being killed
Cap it so that the Kernel immediately rejects
all future incoming massages
For each message in the message queue
If the message requires an acknowledgment then
Ramove the timeout event associated with the mezsage
Send kernel_ datagram ("nak") to the message originator
End if
Delete the message from the message queue
Free the datagram holding the message
End loop
Free the current send buffer

CMU/SEI-89-TR-19

6. Process Attribute Readers

T e T L S +
| |
e e e et bl bl bty + |
| Who am I J |
D e el Dt + |
| |
e L e D el Ll Dl Dt + |
| Name Of] 1
D it i bbbt + |
|]
R D il Lt bt + |
| Get Process Priority | }
i ettt b DDt + |
| !
et e et + |
| Get Process Preemption } |
b L el et + |
} |
L e e +

For a description of the functionality of this package, see Kernel Facilities Definition, Chapter
18. The requirements satisfied by this package are found in the Kernel Facilities Definition,
Chapter 9.

46 CMU/SEI-89-TR-19

)

N o &0 D O s s .

6.1. Whoam/||

6.1.1. Interface

who_am i return process_identifier

6.1.2. PDL

If called from an interrupt handlexr then
Raise illegal context_for_ call

End if

Return current_ running process

6.2. Name Of

6.2.1. Interface

name of (process identifier)
return process logical name...as a string

6.2.2. PDL

Return the logical name field of the specified process
from the process table

6.3. Get Process Priority

6.3.1. Interface

get_process priority return priority

6.3.2. PDL

If called from an interrupt handler then
Raise illegal_context_for_call
End if
Return priority of the current_running process

6.4. Get Process Preemption

6.4.1. Interface
get_process_preamption return preemption state

CMU/SEI-89-TR-19

47

6.4.2. PDL

If called from an interrupt handler then
Raise illegal context
End if
Return preemption status of the current_running process

48 CMU/SEI-89-TR-19

I

7. Process Managers

e e L LT +
| I
T e el + |
| Declare Process | |
e + |
| |
e e e T + |
| Create Process | |
e e + |
| |
e T e +

For a description of the functionality of this package, see Kernel Facilities Definition, Chapter
16. The requirements satisfied by this package are found in the Kernel Facilities Definition,
Chapter 7.

CMU/SEI-89-TR-19 49

7.1. Declare Process: for Kernel Process

7.1.1. Interface

Declare_process (process logical name)
return process identifierx

7.1.2. PDL

If calling unit is not the Main Unit then
Raise calling_unit_not_main unit

End if

Declare_process_real work

7.2. Declare Process: for non-Kernel device

7.2.1. Interface

Declare_process (device logical name)
return process identifier

7.2.2. PDL

If calling unit is not the Main Unit then
Raise calling_unit_not_main unit
End if

If the device logical name is not in the NCT then
Raise unknown_non_kernel_device
End if

Declare_process_real work

7.3. Create Process

The act of creating a process broadcasts a special Kernel-to-Kernel message. The exact
format of this message is shown in Appendix B, Table 1.

7.3.1. Interface

Create_process (process identifiez,
address of the process code,
stack size for process local data,
message queue size as number of messages,
how to handle message queue overflow,
initial priority,
initial preemption)

50 CMU/SEI-88-TR-19

7.3.2. PDL

If the process identifier is null then
Raise illegal process_identifier
End if

If calling unit is not the Main Unit then
Raise calling unit not_main unit
End if

If process identifier is not in the process table then
Raise illegal process_identifier
End if

If process being created was declared as a non-Kernel device then
Raise no_kernel process_on_non_kernel device
End if

If process has already been created then
Raise process_already created
End if

If the address ¢of the process code is illegal then
Raise illegal process_address
End if

Gensrate the process_index

Allocate the stack space

Set the stack_low_address £field in the process table

Set the stack high_ address field in the process table

Set the priority field in the process table

Set the preemption field in the process table

Set the message_queue size field in the process table

Set the queue_overwrite rule in the process table

Set the message_queue field in the process table to a new,

Create the call frame via process_encapsulation
Insert the process into the Scheduler

Set the locally created field in the process table
Broadcast the process_created message

7.4. Declare_process_real_work

The PDL below embodies the following design issues:
1. All stack address are longword (i.e., 32-bit) aligned due to hardware
constraints.

2. The stack must be allocated before the initial call frame may be created
herein.

CMU/SEI-89-TR-19

7.4.1. Interface

declare_process_real work (process logical namae,
kind of process)
return process identifiex

7.4.2. PDL

If the process logical name is already in use then
Raise process_already_ aexists

End if

Create a new process table entry

If there is insufficient space to do this then
Raise insufficient_space

End if

Log the process logical name in the process table entry
Log the kind of process in the process table entry

Mark the process as daclared
Eaqueue the new process table entry in the process table

7.5. Null_procedure

This procedure is used by create process if a user error is detected and a clean recovery in
not possible. In such a case, Create_process creates a truly void process.

This procedure is never called; it does nothing.

7.5.1. Interface
N/A

7.5.2. PDL
Null

7.6. Calling_unit_is_main_unit

The PDL below embodies the design issues:

1. During processor/process initialization, the Main Unit must be the
null_process.

52 CMU/SEI-89-TR-19

7.6.1. Interface

calling unit_is_main_unit return boolean

7.6.2. PDL

Return indication whether or not the current_running process
is the null_process

7.7. Is_illegal

This function tests for an illegal address for process code. As this may be highly application
specific, a simple default is currently implemented: the function accepts anything as a legal
address.

7.7.1. Interface

is_illegal (address to test)
return boolean

7.7.2. PDL

return false

CMU/SEI-89-TR-19 53

8. Processor Management

L e EE L P L Pt +
| I
e e et D ittt b + |
| Initialize Master Processor | |
e L L -+ i
| |
e + I
| Initialize Subordinate Processor | |
ittt + |
| |
Rl e e Ll S Ll D e Dbt + |
| Initialization Complete | |
e et + !
l |
T e EE L P L e LT +

For a description of the functionality of this package, see Kernel Facilities Definition,
Chapters 15 and 16. The requirements satisfied by this package are found in the Kernel
Facilities Definition, Chapters 6 and 7.

The implementation of processor or network initialization requires that a number of
messages be exchanged among the nodes. The exact format of each message is
described in Appendix B, Table 3.

The initialization protocol occurs in two phases:

e Phase 1: where the Master processor verifies the connectuvuty of the network.
This is shown in Figure 15.

e Phase 2: where the Master processor synchronizes all the Kernel clocks and
commences process creation. This is shown in Figure 16.

These figures illustrate the protocol as it works for a simple two-node network.

54 CMU/SEI-89-TR-19

(\ 11

Communication 8 Bus
Management 0
—____/
3 §7 ;10
N

Communication Subsystem

) 5

Communication
Management

—

NCT 1

1. Initialize_subordinate_processor call is issued. Initialize_master_processor
call is issued.

2. The NCT is read and the initialization order of the network is determined.

3. The master_ready message is sent to the subordinate via
communication_management and bus_io over the communication subsystem.

4. A message interrupt arrives at the subordinate.

5. The master_ready message is delivered to the subordinate via bus_io and
{communication_management}.

6. The subordinate responds by determining the size of the NCT, formatting an
nct_size message and sending it to the Master.

7. A message interrupt arrives at the Master.
. The nct_size message is delivered to the Master.

9. The subordinate continues its response by reading the NCT, formatting an
nct_entry message for each row of the NCT, and sending each message to
the Master.

10. A message interrupt for each nct_entry message arrives at the Master.
11. Each NCT_entry message is delivered to the Master.

12. The Master reads its copy of the NCT and verifies the validity of the
subordinate’'s NCT.

oo

Figure 15: Network Initialization Protocol: Phase 1

CMU/SEI-89-TR-19

55

Clock

Communication
Management

Clock

Y

Communication
Management

e

O A WN

O O o N

. The Master reads the current time of day.
. The Master sends the go message to the subordinate.
. An interrupt arrives at the subordinate.

The go message is delivered to the subordinate.

. The subordinate sends a go_acknowledge message to the Master.
. The subordinate resets its local clock to be synchronized with the Master's

local clock.

. Controi returns to the subordinate’'s Main Unit.

. An interrupt arrives at the Master.

. The go_acknowledgment is delivered to the Master.
. Control returns to the Master's Main Unit.

Figure 16: Network Initialization Protocol: Phase 2

56

CMU/SEI-88-TR-19

8.1. Initialize_master_processor

8.1.1. Interface

initialize master_processor (current time of day
initialization timeout)

8.1.2. PDL

Phase 0...........ciiiinninnnnns
Check that calling unit is main unit
If the data structures have not yet been initialized then
Initialize the real time clock
Initialize the process table
Initialize the scheduler
Initialize datagram management
Initialize bus io
Initialize the time keeper
Indicate that the data structures are now initialized
End if
Determine_ order

For each node in the initialization order loop
Lookup the process index for the main unit on the subordinate
Insert a timeout event
Send master ready message to the subordinate
Receive nct
Remove the timeout event
If the subordinate is needed to run then
If the subordinate’s NCT matches the Master’s NCT then
The subordinate has successfully completed phase 1
Else
The subord.nate has has failed to complete phase 1
Broadcast a network failure message
Raise network failure
End if
Else
If the subordinate’s NCT matches the Master’'s NCT then
The subordinate has successfully completed phase 1
Else
The subordinate has has failed to complete phase 1
End if
End if

Exception
When the timeout expires =>
The subordinate has has failed to complete phase 1
If the subordinate is needed to run then
Broadcast a network failure message
Raise an exception
End if
When some other exception occurs =>
The subordinate has has failed to complete phase 1
If the subordinate is needed to sun then

CMU/SEI-89-TR-19

57

Broadcast a network failure message
Raise network_ failure
End if
End loop

For each node in the initialization order loop
If the subordinate completed phase 1 then
Lookup a process index for the main unit on the subordinate
Insert a timeocut event
Format a go message
Send go_enclosed message to the subordinate
Wait for subordinate to respond
Remove the timeout event
If the subordinate is needed to run then
If tne response is a go_acknowledgment then
The subordinate has successfully completed phase 2
Else
The subordinate has has failed to complete phase 2
Broadcast a network failure message
Raise network_failure
End if
Else
If the response is a go_acknowledgment then
The subordinate has successfully completed phase 2
Else :
The subordinate has has failed to complete phase 2
End if
End if

Exception
When the timeout expires =>
The subordinate has has failed to complete phase 2
If the subordinate is needed to run then
Broadcast a network failure message
Raise an exception
End if
When some other exception occurs =>
The subordinate has has failed to ccmplete phase 2
If the subordinate is needed to run then
Broadcast a network failure message
Raise network_failure
End if
End loop
When some other exception occurs =>
If the subordinate is needed to run then
Broadcast a network failure message
Raise network_failure
End if

58 CMU/SEI-89-TR-19

8.2. Initialize_subordinate_processor

8.2.1. Interface

initialize_subordinate_ processor (initialization timeout)

8.2.2. PDL

Phase O0...............00cienonn.
Check that calling unit is main unit
If the data structures have not yet been initialized then
Initialize the real time clock
Initialize the process table
Initialize the scheduler
Initialize datagram management
Initialize bus io
Initialize the time keeper
Indicate that the data structures are now initialized
End if

Insert a timeout event
Wait for the Master to send a master_ ready message
Remove the timeout event
If the message is a master_ ready message then
Send_nct
Else
Broadcast a network failure message
Raise network_failure
End if

Exception
When the timeout expires =>
Broadcast a network failure message
Raise an exception
When scme other exception occurs =>
Broadcast a network failure message
Raise network_failure

Insert a timeout event
Wait for the Master to send a go_enclosed message
Remove the timeout event
If the message is a go_enclosed message then
Send the a go_acknowledge message to the Master
Reset the loc-: epoch time
Else
Broadcast a network failure message
Raise network_ failure
End if

Exception
When the timeout expires =>
Broadcast a network failure message
Raise an exception

CMU/SE|-89-TR-19 59

Exception
When some other exception occurs =>
Broadcast a network failure message
Raise network_ failure

8.3. Initialization_complete

_ 8.3.1. Interface

initialization_complete (final initialization timeocut)

8.3.2. PDL

Check that the calling unit is the Main Unit
Insert a timeout event
Broadcast the init_ complete message

Phase 1.......... ¢ iiiiniennnnne
Determine if all the nodes have broadcast their init_cocmplete messages,
this is done by looping thru all the ncdes in the NCT while
their local initialization complete flags are "and"ed together
If the result is false, then the loop is repeated (since the
initialization complete messages arrive asynchronously)
If the result is true, then
all the nodes call have issued a call to initialization_complete
and continue by pruning the process table of unneeded entries

Phase 2.c..ititienninnneans
Initialize the process table iterator
While their are more entries to process loop
Get the next process table entry
If the process is declared then
If the process was (remotely created and locally created) or
not created at all then
Broadcast network failure
Raise networ)_failure
Else
The process entry is correct
Else...it was remotely created by never locally declared
Clear the entry in the process mapping table
Purge the entry from the process table
End loop

If the resulting process table is too large then
Broadcast network failure
Raise network_failure

End if

Log initialization complete
Remove the timeout event
Schedule the first eligible application process

Exception

60 CMU/SEI-89-TR-19

N BN - A I BN oA B BN

When the timeout expires =>
Broadcast network failure
Raise an exception

8.4. Determine_order

8.4.1. Interface

determine_oxrder

8.4.2. PDL

For each node entry in the NCT loop
If the node is a kernel device and the initialization order is set then
Increment the participating node count
Log the node in the initialization order
End if
End loop

If the participating node count is zero (indicating no explicit
initialization order was specified by the user) then
For each node entry in the NCT loop
If the node is a kernel device then
Increment the participating node count
Log the node in the initialization order
End if
End loop
End if
Log the participating node count

~ 5. Receive_nct

8.5.1. Interface

receive nct (expected subordinate
raceived subordinate nct)

8.5.2. PDL

Wait for a message from the subordinate
If the message is not an nct_count or
the wrong subordinate sent the message then
Raise an exception
End if

Once the count is successfully received then loop until
that number of NCT entries is received
Wait for a message from the subordinate
1f the message is not an nct_entry or
the wrong subordinate sent the message then

CMU/SEI-89-TR-19 61

Raise an exception
End if
End loop

Return the received NCT to the Master

8.6. Send nct

8.6.1. Interface

send nct (master processor)

8.6.2. PDL

Send the size (in entries) of the NCT to the master processor
For each entry in the NCT loop

Send the NCT entry to the Master processor
End loop

62 CMU/SEI-89-TR-19

9. Semaphore Management

e e e +
|]
e e + I
| Claim | |
$mmmmmmmmm oo + I
} |
T + |
| Release | |
$mmmme e mmm— e + I
| |
e e +

For a description of the functionality of this package, see Kernel Facilities Definition, Chapter
17. The requirements satisfied by this package are found in the Kernel Facilities Definition,
Chapter 8.

CMU/SEI-88-TR-19 63

9.1. Claim

9.1.1. interface

Claim (semaphore name,
resumption priority)

or

Claim (semaphore name,
elapsed timaocut,
resumption priority)

or

Claim (semaphore name,
epoch timeaout,
resumption priority)

9.1.2. PDL

If called from an interrupt handler then
Raise illegal_ context

Else if semaphore already claimed by this process then
Raise illegal context

End if

If queue depth = -1 then...the samaphore is available
Set semaphore’s wait queue dapth to O
Schedule (priority => resumption priority)
Elgse
Set semaphore pending field in Process Table
Increment the semaphore’s wait queue depth by 1
Enqueue process in the semaphore’s wait queue
If a timeout was specified then
Insert_event (semaphore timeout)
End if
Schedule (priority => resumption priority,
state => blocked)
End if

9.2. Release

9.2.1. Interface

Ralease (semaphore name)

64 CMU/SEI-89-TR-19

AN TEn M NP T B 35 B AN AN Oy e e

9.2.2. PDL

If called from an interrupt handler then
Raise illegal_ context

Else if semaphore not claimed by this process then
Raise not_my semaphore

End if

If the semaphore’s wait queue dapth = 0 => no process is waiting
Set semaphore’s wait queue depth to -1
Set wait queue head to null
Else
Decrement queue depth by 1
Daqueue process from the semaphore’s wait queue
If a timeout is pending then
Remove event (semaphore timeout)
End if
Clear semaphore pending field of the dequeued process
in Process Table
Insert Process(dequeued process) into Scheduler
Schedule
End if

CMU/SEI-89-TR-19

10. Time Globals

(Elapsed_time

(Zero_elapsed time
(Epoch_time

(Zexro_epoch time

(Integral_ duration
(Ticks_per_ second

| Create_elapsed time |
| Create_epocl time |
| Seconds (2) {
| Milliseconds |
| Microseconds |
I wan (2) l
l nwon (2) I
| Vot (2) I
I n/ " l
| <t (2) |
| =" (2) !
| ">" (2) |
| ">=" (2) |
| Base_time |
| To_elapsed time |
| To_epoch timae |
| To_ada duration |
| To_kernel_ tima |

CMU/SEI-89-TR-19

a A W Emy W am

10.1. Create_elapsed_time

10.1.1. Interface

Create_elapsed time (day, second) return elapsed time

10.1.2. PDL

Multiply day by kernel time for 1 day (86400 seconds)
Convert second to kernel_time

Add to result of multiplication

Convert result from kernel_time to elapsed time
Return elapsed time value

10.2. Create elapsed_time

10.2.1. Interface

Create_elapsed_time (day, second) return epoch_time

10.2.2. PDL

Multiply day by kernel time for 1 day (86400 seconds)
Convert second to kernel_ time

Add to result of multiplication

Convert result from kernel time to elapsed time
Return epoch time value

10.3. Seconds

10.3.1. Iintertace
Seconds (an Ada duration) return elapsed time
or

Seconds (an integral duration) return elapsed time

10.3.2. PDL

Convert argument to kernel_ time
Convert result to elapsed time
Return elapsed time

CMU/SEI-89-TR-19 67

10.4. Milliseconds

10.4.1. Interface

Milliseconds (integral milliseconds) return elapsed time

10.4.2. PDL

Convert integral milliseconds to kernel_ time
Convert result to elapsed time
Return elapsed_time

10.5. Microseconds

10.5.1. Interface

Microseconds (integral microseconds) return elapsed time

10.5.2. PDL

Convert integral microseconds to kernel time
Convert result to elapsed time
Return elapsed time

10.6. "+"

10.6.1. Interface

"+" (elapsed time, elapsed time) return elapsed time

or
"+" (epoch time, elapsed time) return epoch time
10.6.2. PDL
Convert arguments to kernel_time
Call kernel_time."+" to perform operation
Convert result from Karnel time to appropriate type
Return converted time value
10 7 !O.l!
68 CMU/SEI-88-TR-19

N I WE N I =

10.7.1. Interface

"-" (elapsed time, elapsed time) return elapsed time
or

"-" (epoch tima, elapsed tima) return epoch time
or

"-" (epoch time, epoch time) return elapsed time

10.7.2. PDL

Convert arguments to kernel time

Call kernel_time."-" to perform operation

Convert result from Kernel_ time to appropriate type
Return convertead time value

10.8. "*"

"*¥" (elapsed time, integer) return elapsed time
or

"*" (integer, aelapsed tima) return elapsed time

10.8.1. PDL

Convert arguments to kernel time

Call kernel time."*" to perform operation

Convert result from Kernel_time to appropriate type
Return convertaed time value

10.9."/"

10.9.1. Interface

"/" (elapsed time, integer) return elapsed time

10.9.2. PDL

Convert arguments to kernel_ time

Call kexrnel time."/" to perform operation

Convert result from Kernel_time to appropriate type
Raturn converted time value

CMU/SEI-89-TR-19

69

10.10. "<"

10.10.1. Interface
"<" (elapsed time, elapsed time) return boolean
or

"<" (epoch time, epoch time) return boolean

10.10.2. PDL

Convert arguments to kernel time
Call kernel time."<" to perform com»arison
Return result

10.11. "<="

10.11.1. interface
"<=" (elapsed time, elapsed tima) return boolean
or

"<=" (epoch time, epoch time) return boolean

10.11.2. PDL

Convert arguments to kernel timae
Call kernel_time."<=" to perform comparison
Return result

10.12. ">"

10.12.1. Interface
">" (alapsed time, elapsed time) return boolean
or

">" (epoch time, aepoch time) return boolean

10.12.2. PDL

Convert arguments to kernel_ time
Call kernel_time.'">" to perform comparison
Return result

70 CMU/SEI-89-TR-19

i un e od mh o wl B ue

R el ull o EE M e B En vl

10.13. ">="

10.13.1. Interface

">=" (elapsed time, elapsed time) return boolean

or

">=" (apoch time, epoch time) return boolean

10.13.2. PDL

Convert arguments to kernel time
Call kernel_ time.'">=" to perform comparison
Return result

10.14. Base_time

10.14.1. Interface

bagse_time return epoch time

10.14.2. PDL

Return base_;ima_yalue

10.15. To_époch_time

10.15.1. Interface

To_epoch_time (kernel time) return epoch time

10.15.2. PDL

Convert argument to epoch_time
Return converted value

10.16. To_elapsed_time

10.16.1. Interface

To_elapsed time (Ada duration) return elapsed time

or

To_elapsed time (Ada duration) return elapsed time

CMU/SEI-89-TR-19

10.16.2. PDL

Convert argument to elapsed time
Retuzrn converted value

10.17. to_ada_duration

10.17.1. Interface

To_ada_duration (elapsed time) return ada duration

10.17.2. PDL

If elapsed time is not in range -86400 seconds to +86400 seconds then
Raise constraint_error
Else
Compute multiple of DURATION’ SMALL not greater than
the elapsed time
Convert the result to duration
Return converted value
End if

10.18.1. Interface
To_kernel time (elapsed time) return kernel_ time
or

To_kernel time (epoch time) return kernel_ time

10.18.2. PDL

Convert argument to kernel_ time
Raturn converted value

|
i
!
i
|
|
I
i
|
10.18. To_kernel_time |
i
i
|
|
1
i
|
|
i

72 CMU/SEi-89-TR-19

11. Time Management

T i e D +
| 1
e e CE LT P L Lt + 1
| Adjust Elapsed Time i |
e et + |
i]
et + |
| Adjust Epoch Time | |
ittt it it + H
| |
e R EE LR e DR + |
| Read Clock | i
e + |
| |
e e E L DR RPN + |
| Synchronize | * |
D e el DL Lt D DD + |
| * Atomic operation)
e et e T +

For a description of the functionality of this package, see Kernel Facilities Definition, Chapter
21. The requirements satisfied by this package are found in the Kernel Facilities Definition,
Chapter 12.

See Chapter € for a detailed discussion of the implementation of synchronize.

CMU/SEI-88-TR-19 73

11.1. Adjust Elapsed Time

11.1.1. Interface
adjust_elapsed time (adjustment)

11.1.2. PDL

Raise illegal elapsed time exception
Else

adjust_elapsed time (adjustment) via time keeper
End if

11.2. Adjust Epoch Time

11.2.1. Interface
adjust_epoch_time (new time of day)

11.2.2. PDL

If adjustment would result in a negative time of day then

If the new time of day is meaningless (i.e., less than zaro) then

Raise illegal time of day exception
Else if the new time of day has already occurred then
Raise ok_but_time already passed
Else
reset_epoch_time (new time of day) via time_ keeper
End if

11.3. Read Clock

11.3.1. Interface

read clock return current time of day

11.3.2. PDL

return get_time via Clock.get_time

11.4. Synchronize

74

CMU/SEI-89-TR-19

11.4.1. Interface

synchronize (timeout, resumption priority)

11.4.2. PDL

Allocate synchronization bus
If allocated then
Read current time of day
Send current time of day to all other nodes
Elsge
Set the exception_name to sync_'n_progress
Schedule (new priority => resumption priority)
End if

CMU/SEI-89-TR-19

75

12. Timeslice Management

T LT P S +
I |
e + |
| Set Timeslice | |
e T P + |
1 |
e D e it el + |
| Enable Time Slicing) |
A et b b Sttt b D + |
| |
o e e e + |
| Disable Time Slicing | |
bl bl il DL T + I
l 1
R e e PR S TS e +

For a description of the functionality of this package, see Kernel Facilities Definition, Chapter
18. The requirements satisfied by this package are found in the Kernel Facilities Definition,
Chapter 9.

76 CMU/SEI-89-TR-19

12.1. Set Timeslice

This primitive does not affect the currently pending slice_expiration event. The next slice
event uses the new slice quantum.

12.1.1. Interface
Set_timeslice (new quantum)

12.1.2. PDL

If illegal quantum enabled then
If the new_quantum < minimum time slice then
Raise illegal quantum
End if
End if

If the new_quantum < minimum time slice then
Set timeslice_duration := minimum time slice
Else
Set timeslice_duration := new quantum
End if

12.2. Enable Time Slicing

If time slicing is currently enabled, then this primitize performs no action.

12.2.1. Interface
Enable_time slicing

12.2.2. PDL

If time_slicing_enabled is false =>
Set time slicing_enabled to true
If the current_running process is preemptable =>
Set slice_event_id := Insert_event (slice expiration)
End if
Else
Null
End if

CMU/SEI-88-TR-19 m”

12.3. Disable_time_slicing

12.3.1. Interface

Disable_time slicing

12.3.2. PDL

If time slicing enabled is true =>
Set time slicing enabled to false
Remove_ event (slice event_id)

Else

Null

End if

CMU/SEI-89-TR-19

13. Tool Interface

R A e LD +
| |
------------------------------- '
(Proceas Attributes) |
_______________________________ '
! |
------------------------------- l
(Message Attributes) i
------------------------------- '
]]
_______________________________ l
(Message Contents) |
_______________________________ l
{ |
------------------------------- I
(Message Length) |
------------------------------- l
| |
T I + [
| Begin Collection | |
T et R T + |
| |
et T +]
| Cease Collection] |
e e e L L L L +]
[|
e e D L T + !
| Size of Process Table | |
e e e L e e LS + |
| |
e et T + |
| Read Process Table | |
e e L Lt + |
! l
e + I
| Read Interrupt Table | |
e L LT LT + A
| |
R e e L L L PP S P e +

For a description of the functionality of this package, see Kernel Facilities Definition, Chapter
23. The requirements satisfied by this package are found in the Kernel Facilities Definition,
Chapter 14.

The tool_interface package defines the user visible access to the Kemel's internal
functioning. Three types of per-process attributes are available:

1. process attributes
2. message attributes
3. message contents

Each of these attributes is defined in more detail below. This package simply turns on and
off the collection of tool data, it does not perform any of the actual collection or p.ccessing.
Additional information on the collection of tool interface data can be found in Chapter 14.
The format for a tool interface message is shown in Table 4.

CMU/SEI-89-TR-19 7

13.1. Process Attributes

13.1.1. PDL

type process_ attributes_entry is record

id:

state:

time state_change:
current_priority:
current preemption:
alarm pending:
primitive_ identity:

primitive return_status:

end racord;

13.2. Message Attributes

13.2.1. PDL

type message_attributes_entry
sender process_id:
receiver_ process_id:
message_length:
message_tag:

time Kernel got message:

end record:;

13.3. Message Contents
13.3.1. PDL

type message_contents type is
13.4. Message Length

13.4.1. PDL

process identifier;
pProcess state;

epoch_time;

priority;

Preemption;

boolean;

Kernel primitive name type;
kernel_ exceptions;

is record

full process_id:
full process_id;
message_length type:
message_tag_ type:
epoch time;

array (hw_natural range <>) of hw_byte;

message length: array (range of per-process attributes)

of message_length type;

CMU/SE!-89-TR-19

13.5. Begin Collection

13.5.1. Interface

procedure begin collection (process on which to start collecting data,
message tag for this information,
type of information to collect)

13.5.2. PDL

If the process id of the process to monitor is bad then
Ignore the request

Else
Mark the tocl interface as enabled for the process
Log the tool process
Log the massage tag

End if

13.6. Cease Collection

13.6.1. Interface

procedure end collection (process on which to stop collecting data,
type of information to stop)

13.6.2. PDL

If the process id of the process to monitor is bad then
Ignore the request
Else
Clear the tool process
If none of the individual tool attributes arxe still active then
Mark the tool interface as disabled (if none of the individual
End if
End if

13.7. Size of process table

13.7.1. Interface

Function size_of_process_table
return number of entr. .s_in process_table

CMU/SEI-89-TR-19 81

13.7.2. PDL
Raturn the size of the process table

CMU/SE!-89-TR-19

13.8. Read Process Table

This operation is atomic so that a time-consistent snapshot of the Process Table is obtained.

13.8.1. Interface

procedure read process_table (the user’s process table buffer,
the last entry filled in by the copy)

13.8.2. PDL

Begin atomic
Initialize a process table iterator
While there are more entries in the process table loop
Get the next entxy in the process table
Store it in the callexr’s copy
End loop
Mark the end of the process table
End atomic

13.9. Read Interrupt Table

13.9.1. Interface

procedure read_interrupt_table (the user’s interrupt table buffer)

13.9.2. PDL

Copy the interrupt table for Kernel sgpace to user space

CMU/SE!-89-TR-19 83

CMU/SEI-89-TR-19

lll. Core Kernel

The packages described in this part are not directly visible to application-level code; but they
are the means by which the functionality of the visible interface is achieved.

CMU/SEI-89-TR-19 85

1. Bus /O
e T e L et St +
1 i
_______________________________ |
(Datagram Representation) |
------------------------------- l
| |
............................... i
(Keznel Operation) |
e r—cceccccceam————e———————— {
! |
............................... |
(Kernel Tags) |
_______________________________ I
| i
R i ettt + |
| Initialize } |
e e atnalat Ll + |
| |
4o oo + |
| Send Process Datagram | }
e e +]
! l
e e e L L LR L e +]
| Send Kernel Datagram f |
L Ll Dt Lt e DDl + |
| }
e e e Ll + |
{ Receive Blind Message i |
et L D el + |
! i
et e e T +]
| Multi Send | |
e + |
! |
e L EE R PP SR RS +

This package is Kemel's interface to tne network processor (NProc). As such, it is
responsible for formatting datagrams for transmission over the network and receiving
datagrams transmitted by other nodes in the network.

There are five message types in the system (the exact format of each of these messages is
in Appendix B):

e Non-Kemel message: A datagram sent by a non-Kernel device. This is a
user-level operation and the data contained in such a message is deposited in
the allocated receiver's message queue.

o Blind send: A datagram sent without expectation of message receipt
confirmation. This is a user-level operation and the data contained in such a
message is deposited in the specified receiver's message queuse.

e Acknowledged Send: A datagram sent with the expectation that an
acknowledgment will be returned. This is a user-level operation, and the data
contained in such a message is deposited in the specified receiver's message
queue.

86 CMU/SEI-89-TR-19

)

o Kernel Message: A datagram sent by one Kernel to its counterpart on another
node. These messages are handled entirely within the receive datagram
interrupt handier of the receiving Kermnel. Associated with these messages is a
set of message tags that supply additional information:

* Ack: user message received correctly by destination process (sender's
process |ID and message id are part of the message contents).

* Nak: user message not received by destination process (sender's
process ID and message id are part of the message contents).

* Nak - Process Dead: user message not received by destination process
because it has terminated (sender’s process ID and message id are part
of the message contents).

« Info — Process Dead: Kernel or user message not received by destination
process because it has terminated.

« Kill Process: a request to terminate a locally executing process.

* Network Failure: a fatal communication error has been detected.

« Initialization Complete: a node in the network has completed its
initialization sequence.

* Process Created: a node in the network has successfully created a local
process.

e |nitialization Protocol Message: a datagram sent during initialization by one
Kernel to its counterpart on another processor. These messages are deposited
in the "message queue” of the Main Unit for processing by the Kernel primitives
that implement the initialization protocol. Associated with these messages is a
set of message tags that supply additional information:

* Master Ready: the Master processor is ready to commence the
initialization protocol.

* NCT Enclosed: a subordinate processor has sent its NCT to the Master
Processor.

* Go Enclosed: the Master processor has told a subordinate process to
commence process creation.

*« Go Acknowledgment: a subordinate proci:csor has acknowledged its
receipt of the Go message.

The appearance of initialization complete and process created in the Kernel
message tags and not as initialization protocol message tags requires some elaboration.
First, while these tags are associated with initialization messages, their receipt by a
processor does not correspond with a waiting primitive call by the recipient (as does the
handshaking implemented by the initialization protocol messages). Second, since there is
no corresponding primitive to capture these messages and process them; this processing is
best done in the message interrupt handler of the receiver. Finally, this partitioning
facilitates subsequent implementation of dynamic network configuration (at the process and
processor levels).

CMU/SEI-89-TR-19 87

I

1.1. Initialize

1.1.1. Invocation

Initialize

1.1.2. PDL

Bind Receive_datagram interrupt_handler to the
intexrprocessor interrupt
Enable interprocessor intaerrupts

1.2. Send Process Datagram

1.2.1. Invocation

send process_datagram (
message receiver,
massage operation,
timeout,
message tag,
massage identifier,
message length,
message text)

1.2.2. PDL

Allocate an empty datagram
If a datagram is available then
If called from an interrupt handler then
Set sender’s pid to null
Else
Set sender’s pid to current_running process
End if
Fill in datagram header information from paramaters
Copy from the sendar’s buffer to the datagram’s buffer
Enqueue the datagram on the output queue
Else
Null...do nothing
End if

1.3. Send Kernel Datagram

88 CMU/SEI-89-TR-19

i N A s OE S A A By s

1.3.1. Invocation

send_kernel_ datagram (
nassage sender,
message receiver,
message opsration,
timeocut,
message tag,
message identifier,
massage length,
message text)

1.3.2. PDL

If receiver is a non-kernel device then
Return. . .Kernel maessages don’t go to non-Kernel devices
End if
Allocate an empty datagram
If a datagram is available then
If called from an interrupt handler then
Set sender’s pid to null
Else
Set sender’s pid to current_ running process
End if
Fill in datagram header information from paramaters
Copy from the sender’'s buffer to the datagram’s buffer
Enqueue the datagram on the output queue
Else
Null...do nothing
End if

1.4. Receive Datagram I/H

1.4.1. Invocation
N/A

1.4.2. PDL

While there are messages waiting for the K-Proc
Dequeue a massagae
Case message operation is
When non-Kernel message =>
Receive_non_ksrnel massage
When blind send =>
Receive _blind message
When acknowledged send =>
Receive_acked message
When kernel message =>
Receive_kernel message

CMU/SEI-89-TR-19 89

When initialization protocol message =>
Indicate receiver has receive_pending
Receive Blind message
When sync_protocol message =>
null -- these are handled explicitly elsewhere...
End Case
End if
End Loop

1.5. receive_non_kernel_message

1.5.1. Interface

receive non_kernel message (incoming datagram)

1.5.2. PDL

Parform error processing for: -
No process assigned to the non-kernel device for receiving messages
Receiver procass is dead
Receiver message queue is full

Enqueue datagram on the receiver’s message Jqueue
If receiver is waiting then
Schedule (new_state => suspended)
Else
Null
End if

1.6. Receive Blind Message

1.6.1. Invocation

receive_blind message (incoming datagram)

1.6.2. PDL

If the receiving process is dead then
If the sender is not an interrupt handler then
Send a Kernel-to-Kernel informational message back to the
sender’s node that the receiver is dead
End if
Free up the datagram buffer
Elsif the receiver’'s incoming massage queue is full then
Indicate the receiver’s message queue has overflowed
If receiver’s overwrite rule is drop newest message then
Free up the datagram buffer
Else

90 CMU/SEI-89-TR-19

Null...do nothing
End if
Else
Enqueue a datagram on the receiver’s msg queue
If receiver is waiting then
Schedule (new_state => suspended)
End if
End if

1.7. Receive Acked Message

1.7.1. Invocation

receive_acked message (incoming datagram)

1.7.2. PDL

If the receiving process is dead then
If the sender is not an interrupt handler then
Send a Kernel-to-Kernel informational message back to the
sander’'s node that the receiver is dead
End if
Free up the datagram buffer
Elsif the receiver’s incoming message queue is full then
Indicate the receiver’s massage queue has overflowed
If receiver’'s overwrite rule is drop newast massage then
Free up the datagram buffer
Else
Null...do nothing
End if
Else
Enqueue a datagram on the receiver’'s msg queue
If receiver is waiting at a receive message call and
it is also blocked then
Enqueue datagram on receiver’s msg queue
Send an acknowledgment to the senderx
Schedule (new_state => suspended)
Elsif the timeout is less than zerxo then
Enqueue datagram on receiver’s msg quaue
Indicate receiver is has a send with ack pending
Elsif the timeout is zero then
Send a negative acknowledgment to the sender
Free up the datagram buffer
Else
Try to set a time event
If no event was set then
Send a negative acknowledgment to the sender
Free up datagram
Else
Enquaue datagram on receiver’'s message queue

CMU/SEI-89-TR-19

91

Save pointer to datagram so it can be removed if the event

expires.
Indicate the sender has a send with ack pending
End if
End if
End if

1.8. Receive Kernel Message

It is possible for a process to perform a send_message_and_wait operation and then to
terminate before the acknowledgment is received. Since all operations involving a dead
process are meaningiess, all acknowledgments to a dead process are ignored. Also, the
Kernel makes no attempt to inform other Kernels of this condition, preferring, instead, for a
process to make a subsequent attempt to communicate with the dead process.

Also note that it is possible for two (or more) different processors to create the same
process, but that condition is not detected by this procedure. The reasons being that this
condition is caught either:

e When the second processor attempts to create the process, for the case when
the two creations don't occur simultaneously.

e When all the processors have signaled initialization complete, for the case
when the two creations occur simultaneously.

The situation is easy to detect, since a remote process should not have any Scheduler state
on the local processor.

1.8.1. Invocation

receive_Kernel message (incoming datagram)

1.8.2. PDL

Obtain the message tag from the message header
Case message_tag is
When ack =>
If the receiver (the massage originator) is waiting for an
acknowledgment and the message id matches then
Schedule (new _state => suspended)
End if
When nak =>
If the receiver (original msg sender) is waiting for an
acknowledgment and the message id matches then
Setup to raise the No_Message_Received exception
Schedule (new _state => suspended)
End if
When nak - process dead =>

Indicate that the specified process (process to which the msg was

sent to) is dead.

92 CMU/SEI-89-TR-19

If the receiver (original msg sender) is waiting for an
acknowledgment and the massage id matches then
Setup to raise the Receiver Dead exception
Schedule (new_state => suspended)
End if
When info - process dead =>
Indicate that the specified process is dead.
When kill process =>
Kill the specified process
When Process Created =>
Obtain process name from message
If the process has not already been declared then
Do the processing for declaring the process
End if
Map the global and local identifiers
When Initialization Complete =>
Set the processor identifier
Indicate initialization complete
When Network Failure =>
Null
End Case

1.9. Multi Send

This procedure is used only to broadcast "Network Failure” messages to all the nodes

capable of receiving the message.

1.9.1. Invocation

multi send (
message sender,
message operation,
message tag,
message length,
message text)

1.9.2. PDL

For all of the nodes that are not either the local node and
are Kernel devices loop .
Send a kernel datagram with the provided message tag
End loop

CMU/SEI-88-TR-19

83

2. Clock
kit +
| |

B D R + |

| Start_clock | }

et R ettty + |
| |

et e S e P Lt T + i

| Stop_clock |)

Dttt bt + |
| |

D e et b Dt Dol l |

| Get time | |

D e D o ittt +]
| |

L e LD Lt B ittt + |

| Adjust_elapsed_time] i

L ittt il el + |
| 1

D R el et + |

| Adjust_epoch_ time i |

D R ittt D ek St + |
| |
e D +

The real-time clock is implemented using one of the timers available on the MZ8305 board,
see Part VIil for a more detailed discussion of the actual timer hardware. Using this timer
allows the Kernel to have a time base independent of the Ada runtime and achieve a
resolution of 2 us.

Time is represented as a 64-bit signed value. This representation consists of two parts:

1. Hardware: the lower 24 bits of the time and is updated autonomously by the
timer hardware at a 2 us rate.

2. Software: the ug?er 40 bits of the time and is updated by the clock interrupt
handler every 2<° clock ticks, i.e., every 16 seconds.

When the clock is read, the low 24 bits of the time are read from hardware and added to the
upper 40 bits to produce the full 64-bit time value. See Chapters 10 and 7 for additional
time details.

94 CMU/SEI-89-TR-19

2.1. start_clock

2.1.1. Interface
start_clock (current time of day)

2.1.2. PDL

Save the base epoch time
Bind the interrupt handler for the clock
Initialize the timer that functions as the clock

2.2. stop_clock

2.2.1. Interface
stop_clock

2.2.2. PDL

Disable the interrupt of the clock’s timer

2.3. get_time

2.3.1. Interface

get_time return current time of day

2.3.2. PDL

Get a copy of the upper 40 bits of the elapsed time

Read the lower 24 bits frcm timer (clock, counter register

If the elapsed time has rolled over then

it happened scmewhere between reading the hardware and coftware portions

of the current time...so, assume that the call hit the rollover point

exactly and return the current value of elapsed time as the current time
return the current time of day (as computed by the clock interrupt handler)

Else, there was no roll over, so
Convert the timer count into microseconds
Add it into the 64-bit representation of time
Return the current time of day

End if

CMU/SEI-89-TR-19

2.4. adjust_elapsed time

2.4.1. Interface
adjust_elapsed time (adjustment)

2.4.2. PDL

Read the current software time
Compute new time °:= current software time + adjustment
Begin atomic
Read the curreat software time again
If the two software times are not the same then
a clock interrupt has occurred
Compute new time .= current software time + adjustment
End if
Save the new software time
End atomic

2.5. adjust_epoch_time

2.5.1. Interface
adjust_epoch_time (new time of day)

2.5.2. PDL

Compute delta time := new time of day -

time of day when clock was started
Adjust elapsed time by the delta time
Reset the the current time of day to the new time of day

2.6. clock_interrupt_handler

2.6.1. Interface
clock_interrupt_handler

2.6.2. PDL

Acknowledge the timer interrupt’
Increment the current time of day

96 CMU/SEI-89-TR-19

—

3. Context Switcher

T +
! |
T + [
| Save Context | |
e T + |
| |
e e L b Dt + |
| Resume Process | i
e e LT + [
| I
B T P TR P + |
| Switch Processes } |
B T + I
| |
Tt e LS +

This package is hardware-dependent and compiler-dependent. It must understand the
register structure of the underlying hardware and the conventions used by the Ada compiler.
This package is responsibie for providing the mechanisms needed to save a process
context (when an interrupt occurs or a context switch occurs) and to restore a saved
process context (when the Scheduler selects a process for execution).

CMU/SEI-89-TR-19 97

3.1. Save Context

3.1.1. Interface

Save_context (process identifier)

3.1.2. PDL
Set Context saved field of process table to by call
Pop PC off interrupt stack ‘

Copy PC into current running process’s context save area

Pop status register off interrupt stack

Copy status register into current running process’s context save area
Copy live registers into current running process’s context save area

3.2. Resume Process

3.2.1. Iinterface

Resume context (process identifier)

3.2.2. PDL

Copy live registers from CURRENT RUNNING PROCESS’s context save area
Set saved context to none
If an exception is pending for this process =>
Raise exception via Exception Raiser
Else
Execute return instruction to resume process
End if

3.3. Switch Processes

3.3.1. Interface

Switch _processes (old process identifier,
new process identifier)

3.3.2. PDL

Save contex: (old process identifier)

Set current running process to new process identifier
Resume process (new process identifier)

98 CMU/SEI-89-TR-19

4. Exception_Raiser

B Bt +
| [
e L L L D Dl + |
| Raise_exception | |
e et + |
] |
et +

This package interfaces with the Ada compiler primitives that raise and propagate
exceptions.

All the possible Kernel exceptions are contained in package Kernel_exceptions and
documented in the Kernel User’'s Manual.

CMU/SEI-89-TR-19 99

4.1. Raise Exception

4.1.1. interface

Raise_exception (exception name)

4.1.2. PDL
Case Exception name is
When ... =>
Raise indicated exception
When ... =>
End case

100

CMU/SEI-88-TR-18

5. Internal Process Management

4o e +
| i
D i ettt e e + |
| Get_next process_number | |
B et + |
I !
D T et DL L Lt + |
| Get_null process_number] |
D el et thatndndedetd + |
| |
D le L il bl + |
{ c.roato_intorml_proco-s | |
L L el b Dbt + |
| |
R e ettt + |
| Create_kerne 1l_processes i |
e S bl L Lt L + |
| |
B e e +

This package collects together a number of loosely related activities that support process
creation.

While the process identifier is used to reference a process locally, it is not suitable for use in
identifying processes remotely (because it is an access type). Thus, each process has a
locally unique process number (a 16-bit integer), that, when appended to the node number
where the process is executing, gives a globally unique 32-bit process index. These process
numbers are created and doled out by this package.

Second, each Main Unit is treated by the Kernel as an executing process. Since the user
does not explicitly create them as such, they are "created" internally by the Kernel during
initialization. This allows all the Kernel facilities built to support user processes to be applied
in support of the Main Unit and processor initialization.

Finally, one additional internal process is created: a time burner. This process has a priority
lower than any user process and can only run when other user processes on the node are
blocked or dead. This process allows for a more efficient scheduling algorithm, since there
is never a situation where no process is eligible to run. It also allows the user to put in place
code that measures idle time on a processor or runs some other appropriate background
work. ‘

CMU/SEI-89-TR-19 101

5.1. Get_next_process_number

5.1.1. Interface
get next_process_number return process number

5.1.2. PDL d

Compute the next available process nu~ber
Return the value to the caller
Exception
when any exception occurs
propagate the exception

5.2. Get_null_process_number

5.2.1. Interface

get null pzocess_number
return process number for null process

5.2.2. PDL

Return the process number reserved for the null process

5.3. Create_internal_process

This procedure does an abbreviated declare and create for processes that the Kernel needs
to create internally.

5.3.1. interface

create_internal process
(node where the process resides
process number
local process indicator
process name
initial process priority
code address)
return process identifier

5.3.2. PDL

Reference declare_process and create_process for a detailed exposition
on the functioning of this code. The primary differences are that the

coda assumes sufficient space exists to create the processes and
it has preset values for the user options.

102 CMU/SEI-89-TR-19

5.4. Create_kernel_processes

5.4.1. Interface

craatq_korn-;_proco:lns

5.4.2. PDL

For each node in the network loop
If the node is this node then
Creata the local Main Unit
Else
Create the remote Main Unit
End if
End loop

Create the time burner process

CMU/SE!I-89-TR-19

103

6. Kernel Interrupt Management

T ettt
|
e e L +
| Enable |
e +
|
e +
| Disable |
e EE LR LR P S P +
|
e +
| Enabled |
e et ST +
|
e L L e P L L L LSS +
| Simulate Interrupt |
e EE S L PP SRR L P +
f
e L LT +
| Bind Interrupt Handler)
et +
|
et L P LS PP PR +
| Initialize |
e et e L +
]
+ ———————————————————————————————————————

104

CMU/SEI-89-TR-19

6.1. Enable

6.1.1. Interface
Enable (interrupt name)

6.1.2. PDL

Set interrupt state in the interrupt table to enabled
Set interrupt’s entry in the Kernel interrupt vector to point to
the user-supplied interrupt handler

6.2. Disable

6.2.1. Interface

Disable (intarzupt name)

6.2.2. PDL

Set interxupt state in the interrupt table to disabled
Set interxupt’s entry in the Kernel interrupt vector to point to
the null interrupt handler

6.3. Enabled

6.3.1. Interface

Enabled (interrupt name)
return boolean

6.3.2. PDL
Return the interrupt state field of the interrupt table
6.4. Simulate Interrupt

6.4.1. Interface

Simulate_interrupt (interrupt name)

CMU/SEI-89-TR-19

105

6.4.2. PDL

Set interrupt_source in the interrupt table to internal
Increment interrupt_nesting level
Begin atomic
Perform an indirect call of the interrupt handler pointed
to by the interrupt’s entry in the intexrrupt table

Exception
when others =>
handle all exceptions, taking no action (to simulate the
effect of an unhandled exception in a real intexrrupt
processing)
End atomic

Decrement the interrupt_nesting level
Set the intexrupt source to be External
If the interrupt can preempt then
Schedule
Else
return to the caller
End if

6.5. Bind Interrupt Handler

6.5.1. Intertace

bind_interrupt_handler (interrupt name,
address of interrupt handler procedure,
interrupt can cause process preemption)

6.5.2. PDL

Insert interrupt name into Interrupt table

Store handler address in the interrupt table

Store value for can_preempt in the interrupt table
Set handler state to bound in the Interrupt table

If the interrupt can preempt then

Call machine-dependent routine to bind a "slow" interrupt
Else _
Call machine-dependent routine to bind a "fast" interrupt
End if

106 CMU/SEI-89-TR-19

7. Kernel Time

(Kernel_time

(Zero_kernel time
(Integral duration
(Ticks_per_second

N Nt et N

+
| Seconds (2) |
| Milliseconds |
| Microseconds |
| "+ (2) |
| =" (2) |
| "*o(2) |
I n/" l
l ||<" '
l "= l
| |
| |

+

">"

CMU/SEI-89-TR-19

107

7.1. Seconds

7.1.1. Interface

Seconds (an Ada duration) return kernel time

7.1.2. PDL

Multiply the Ada duration by 1_000_000
Divide result by 16384 -- DURATION'SMALL
Return resulting kernel time

7.1.3. Interface

Seconds (an integral duration) return kernel_ time

7.1.4. PDL

Multiply the Ada duration by 1_000_000
Raturn resulting kernel time

7.2. Milliseconds

7.2.1. Interface

Milliseconds (integral milliseconds) return elapsed time

7.2.2. PDL

Multiply the integral milliseconds by 1_000
Return resulting kernel time

7.3. Microseconds

7.3.1. Interface

Microseconds (integral microseconds) return elapsed_time

7.3.2. PDL

Sign extend the integral microseconds to 64 bits
Return resulting kernel time

108

CMU/SEI-89-TR-19

& U G I S I A a B

7.4."+"

7.4.1. Interface

"+" (kernel time) return kernel

7.4.2. PDL
Return argumaent as result

7.4.3. Interface

"4+" (kernel time, kernel time) return kernel time

7.4.4. PDL

Add low order 32 bits unsigned

Add with carry high order 32 bits signed
Trap on hardware overflow

Return 64 bit result

7.5. Il-"

7.5.1. Interface

"-" (kernel time) return kernel

7.5.2. PDL
Negate 64 bit argument and return

7.5.3. Intertace

"-" (kernel time, kernel tima) return kernel time

7.5.4. PDL

Subtract low order 32 bits unsigned

Subtract with borrow high order 32 bits signed
Trap on hardware overflow

Return 64 bit result

CMU/SEI-89-TR-19 109

7.6.""

7.6.1. Interface

"*" (LBES => kernel time, RHS => integer) return kernel time

7.6.2. PDL

If RHS < 0 then
LHES := -LAS
RHS := -RHS
End if
Multiply low 32 bits of LHS by RHS unsigned
store the 64 bit result
Multiply high 32 bits of LES by RHS signed
store the 32 bit result
Trap on overflow
Add two partial products signed
Trap on overflow
Return 64 bit result

7.6.3. Interface

"*" (LHS => integer, RHS => kernel time) return kernel time

7.6.4. PDL
As above, interchanging LES and RHS

7.7.""

"/" (LHS => kernel time, RHS => integer) return kernel time

7.7.1. PDL

If RAES < 0 then
LHS := -LHS
RHS := -RHS

End if

Divide high 32 of LHS by RHS signed, giving ql and rl

If high 32 bits of LHS < 0 then

ql := gl -1
rl := RHS + rl
end if

Divide rl,LHS.low by RHS double length unsigned, giving q0 and r0

110 CMU/SEI-89-TR-19

Raturn gql,q0 as the 64 bit result

7.8."<"

7.8.1. Interface

"<" (LHS => karnel time, RHS => kernel time) return boolean

7.8.2. PDL

If high 32 bits of LHS < high 32 bits of RHS then -- signed comparison
return true
Elsif high 32 bits of LHS > high 32 bits of RHS then -- signed comparison
return false
Else
If low 32 bits of LHS < low 32 bits of RHS then -- unsigned comparison
return true
Else
return false
End if
End if

7.9."<="

7.9.1. Interface

"<=" (LHS => kernel time, RHS => kernel time) return boﬁlean

7.9.2. PDL

If high 32 bits of LHS < high 32 bits of RHS then -- signed ccmparison
return true
Elsif high 32 bits of LHS > high 32 bits of RHS then -- signed comparison
return false
Else
If low 32 bits of LHS <= low 32 bits of RHS then -- unsigned comparison
return true
Else
return false
End if
End if

7.10.">"

CMU/SE!-89-TR-19 m

7.10.1. Interface

">" (LES => kernel time, RHS => kernel time) return boolean

7.10.2. PDL

If high 32 bits of LHS > high 32 bits of RHS then -- signed comparison
return true
Elsif high 32 bits of LHS < high 32 bits of RHS then ~-- signed comparison
return false
Else
If low 32 bits of LHS > low 32 bits of RHS then -~ unsigned comparison
return true
Else
return false
End if
End if

7.11. ">="

7.11.1. Interface

">=" (LHS => kernel time, RHS => kernel time) return booclean

7.11.2. PDL

If high 32 bits of LHS > high 32 bits of RHS then -- signed comparison
return true
Elsif high 32 bits of LHS < high 32 bits of RHS then ~-- signed comparison
return false
Else
If low 32 bits of LHS >= low 32 bits of RHS then -- unsigned comparison
return true
Else
return false
End if
End if

112 CMU/SEI-89-TR-19

8. Network Configuration

$omm e e me e eme— e —————— +

i |
------------------------------- '

(NCT) |
............................... I

1 |

T T EEEEEEE PR + I
| get_processor_id | 1
T + I
| |

T e P LT PR e +

For a description of the functionality of this package, see Kernel Facilities Definition, Chapter
15. The requirements satisfied by this package are found in the Kernel Facilities Definition,
Chapter 6.

CMU/SEI-89-TR-19 13

8.1. get_processor_id

8.1.1. Interface
get _p:oconaoz_id (node address) return NCT index

8.1.2. POL

For each node in the NCT loop
If the address of the node is the one in question then
Return the NCT index of the node
End if
End loop

8.2. NCT
The NCT (shown in Figure 17) is discussed in detail in both [KFD 89] and [KUM 89].

Logical Physical Kernel Needed Allocated Initialization | Initialization
Name Address Device To Run Process D Order Complete

Figure 17: Network Configuration Tabie

114 - CMU/SE!-89-TR-19

9. Process_Encapsulation

$ommmmmmmm e eeeemmemem——m————m————eee +
I |
$mmmmm e + |
| Dummy Call Frame | |
T T PR + I
! I
$mmmmmemmee e mmm—e— oo +

This package contains the procedure that handles unexpected terminations of Kernel
processes. There are two kinds of unexpected terminations:

1. Termination: The process simply completes its processing and reaches its
final end statement. When this occurs, the Kernel terminates the process.

2. Unhandled exception: an exception occurs in a process, but no piece of code
within the process handles that exception. When this occurs, the Kerne:
terminates the process and optionally issues a diagnostic message.

CMU/SEI-89-TR-19 115

9.1. Dummy_call_frame

9.1.1. Interface
dummy call frame (process identifier)

9.1.2. PDL

Set initial scheduling paramaters
Insert_process into Scheduler
Begin atomic
Perform indirect call of user process code
Die
Exception
when others =>
If traceback enabled then
Print stack traceback message
End if
Die
End atomic
Schedule

116

CMU/SEI-88-TR-19

10. Process Index Table

e e et +
| |
L it L ettt D D b + |
| clear_process_index | |
L bt ettt et bl bt + |
! |
e Lt LD et + |
| get _prooo-c_idcntitioz | |
et —— e e + |
|]
L e D D et e D el DL b + |
| get_process_index | |
et et LD bl b D + |
| !
ittt e + }
| set_process_index | |
e e EE P L LR DE L P et s + [
| |
LT L L L e e Lt +

As discussed elsewhere, a process had two internal handles:

1. Process identifier: the access variable of the process table entry for the
process.

2. Process index: the globally unique identifier for the process.

This package encapsulates the mapping between the two handles. The mapping table is
built dynamically during processor initialization by Main Unit interaction with the Kernel.

CMU/SE!I-89-TR-19 117

10.1. Clear_process_index

10.1.1. Interface

Clear_ process_index (process index)

10.1.2. PDL

Ramove a process idantifier from the mapping table by setting the
entry in the mapping table to null

10.2. Get_process_identifier

10.2.1. Interface

get_process_ identifier (process index)
return process identifier

10.2.2. PDL

Return the process identifier contained in the mapping table for
the requested process index

10.3. get_process_index

10.3.1. Interface

get_process_index (process identifier)
return process index

10.3.2. PDL

Return the process index from the process table for this process

10.4. set_process_index

10.4.1. Interface

set_process_index (process identifier,
process index)

118 CMU/SEI-89-TR-19

Sl U G D & G O am e e

10.4.2. PDL

Log the process identifier in the mapping table at the
process index position

10.5. Mapping

The mapping table is a simple table indexed by (bus address, process number) and internal
to the package. Each entry in the table hoids the process identifier (i.e., the index into the
local process table for that process). Thus, when a message arrives at a node, the (bus
address, process nhumber) pair of the receiving process bundled in the datagram is used to
index the mapping array and retrieve the index into the process table. The mapping table is
shown in Figure 18.

CMU/SEI-89-TR-19 119

process_tabig

prooess_rable_entry

process_ID

Process_attribytes

Process_indey

Process_number
(-32_766)

1 schodule‘anribmes

communicauon_attributes

pending_acmny_aﬂnbutes

send_w_ACK_attribulss

semaphora_amibutas

tool_lnteﬂace_annbu!es

process_ln/ormarfon_
recorgtor: Merlin

node_number
0
—
1
2
3

procass_table_ontry

process_attribu!es

process_index

Node_number
2)

Process_number
(-32_768)

process_ in/ormalioa_.
recordfor: Vivian

Figure 18: Praocess Mapping Table

CMU/SEI-BQ-TR-‘IQ

—_—

3 & &G B AN AR O s e

11. Process Table

The process table is the primary data structure of the Kemel. It holds all the Kernel state
related to a process. The process table is structured as a doubly linked list, shown in Figure
11, where the data in the linked list is a pointer to a process information record, i.e., a PID.
This gives the Kemel! quick access into the process data, the ability to traverse the entire
process structure and the capability to expand in the future. It is documented fully in the
package specification and discussed in more detail in [KUM 89].

process_table
process_table_entry process_table_entry
/"‘N /‘N r ‘
T
prev | process_lD | next c e prev | process_|D | next
1 3 _/ " L
process_attributes process_aftirbutes
schedule_attributes schedule_attinbutes
communication_aftnbutes communication_aftrbx .
process_ s 0
mlonna:on_ ~ pending_activity_attrbutes pending_activity_attnbutes
recor
send_w_ACK_aftributes send_w_ACK_altributes
semaphore_aftrbutes semaphore_altributes
tool_interface_atiributes tool_interdace_atrbutes
process_information_ process_information_
recordior: Merlin recardior: Vivian

Figure 19: Process Table

One part of the process table that needs elaboration is the pending activity attributes record.
This structure is responsible for maintaining the state of a process when it is blocked and no
longer under the control of the Scheduler. There are five pending activities encapsulated by
this structure:

1. Claim pending: the process is currently blocking on an unsatisfied claim
operation.

2. Receive pending: the process is currently blocked waiting for a message to
arrive.

3. Wait pending: the process is currently blocking waiting for the passage of
some period of time.

4. Send with ACK pending: the process is currently blocked waiting for the arrive
of a message acknowledgment.

CMU/SEI-89-TR-18 121

5. Nothing pending: the process is not blocked. It is either dead or eligible to run
(and thus under the control of the Scheduler again).

Figure 11 shows these pending activity states and the transitions that occur between.

Claim
Pending
‘ g 3‘ sl
8§ &
@ el 3
El] s E
g < &l
I £
€ I €l
©
<1 A B A .
L_A_larr_n expires - . — Alarm expires |
Send with ACK/NAK received | Nothing Receive timeout expires) gecgfve
i i ’ ndin
ACK pending Send message and waf Pending | q—Message armves e g
g Receive message -
A %
| A 3
|
8!
21 -g Kay
E| 3 - — Asynchronous transhtion
[= =
51 2 Y <&—— Synchronous transition
Wait
Pending

Figure 20: Pending Activity States

122 CMU/SEI-89-TR-19

| * Atomic coperation
| ** Atomic by virtue of being used
] exclusively from interrupt level

12. Scheduler
e et L LR L PP L +
| |

_______________________________ I

(Current Running Process) |

_______________________________ I
| |

bt e el L L DL bbb + |

| Initialize | |

e e C T + I
| |

B et E L e PR PR et + |

| Insert Process | * |

R i et b L it + |
| |

e e T + |

| Remove Process | * |

e e LB + |
| !

e e T + |

| Schedule | * |

e e L L DL LB L SR E ettt + !
! !

e e + I

| Schedule_ih | ** |

L ttatalalatded + |

|
!
|

The Kernel Scheduler manages Kernel processes. In particular, the Scheduler, and it alone,
makes the decision to resume a specific process (i.e., change the state of a process from
suspended to running).

The Scheduier knows only about processes that are running or suspended. All
processes in other (i.e., blocked or dead) states are maintained outside the knowledge
and control of the Scheduler. There are three reasons for this:

1. Running and suspended are the only states relevant to the functioning of
the Scheduler.

2. A blocked process is unable to run until the corresponding unblocking event
occurs, thus there is no reason for the Scheduler to maintain any information
about the process.

3. This facilitates replacing the default Scheduler with one of the user’s choice.

Thus, when a process is not blocked or dead (i.e., it is capable of being run} it is inserted
into the Scheduler. When a process blocks or dies, it is removed from the Scheduler.

All Kernel primitives that could cause a process to unblock (and consequently result in a
context switch) end with a call to schedule.

Internally, the Scheduler maintains a run queue ordered by priority. The resumption priority

CMU/SEI-89-TR-19 123

of a

suspended process is the priority seen by the Scheduler; any priority of the process

before an invocation of the relevant Kernel primitive is no longer germane.

Rules Implied by Kernel Requirements

1. Only the current running process and the set of suspended processes are
available for scheduling.

2. A process of higher priority must be scheduled in preference to one of lower
priority ([KFD 89] Chapter 18).

3. A suspended process of a given priority must be scheduled in preference to
one at the same priority whose timeslice has just expired ([KFD 89]
Requirement 9.1.10).

4. If two or more processes change state at the same time (that is, at the same
slice), the changes happen simultaneously (that is, it cannot be the case that
one process has changed state and can detect that another has not) ([KFD
89] Chapter 18).

Information Available to the Scheduler
The following information from the Process Table is used by the Scheduler:

1. Process state

2. Process priority

3. Process preemption state

4. The name of any pending excegtion (if the process is in an error state)

Scheduling Events

The

following lists all the Kernel primitives where the Kernel requirements imply a

scheduling action may occur:

The

e Adjust_elapsed_time

o Claim

e Die

e Initialization Complete

o Kill

¢ Receive_message

¢ Release

* Reset_epoch_time

¢ Send_message_and_wait
e Set_process_priority

e >et_process_preemption
» Synchronize

* Wait

following events may also cause the a scheduling action to occur:

124

CMU/SEI-89-TR-19

o Expiry of an alarm

o Expiry of a timeout

e Expiry of a timeslice

o Expiry of a wait

o Preemptive interrupt

e Obtaining a claimed semaphore

» Receipt of a message

¢ Receipt of a message ACK or NAK .

Scheduler Rules
The following Scheduler rules are universally applied:

1. Scheduler order does not change spontaneously.
2. Scheduler ordering is decided by the rules:

a. Higher priority before lower priority
b. Prefer a process in an error state (to one in a normal state)
¢. FIFO order otherwise

3. When two processes become unblocked simultaneously, the process that has
been blocked longest is considered to become unblocked first.®

The following two examples illustrate the Scheduler's functioning. In Figure 21, the
application has called the wait primitive to block its own execution for one second (there are
no other pending events in this example). Then, Figure 22 shows the activities that occur
when the wait timeout occurs and the waiting process is selected for execution.

3Note that two processes executing on the same processor cannot become blocked simultaneously.

CMU/SEI-89-TR-19 125

1 Time Event
Queue
Process 2 Time 3
Attribute Keeper
Modifiers
4
Event
Timer
Scheduler
T~ _ 10
S~ - ‘

Run Queus ?;c;:ee Ss

1. Application issues a call to wait (one_second).

2. Aninsert_event call is made to create the event.

3. Update the time event queue.

4. Configure the event timer to generate an interrupt in one second.
5

. Invoke the Scheduler to block the waiting process and select the next process
to run.

6. Remove the waiting process from the run queuse.

7. Get the next process to run.

8. Save the context of the waiting process.

9. Restore the context of the next process run.

0. Scheduler transfers control to the resumed process.

Figure 21: Application Blocks

126

CMU/SEI-89-TR-19

L----------

Sl B & B A G B e BE =

(2T 6 I - N

o 0 o~

Event
1 - Timer
Z 2
7/
ime Event
Queue

'

Process
10 Table
7
7
Run Queue

. The wait timeout expires, and generates an interrupt.
. The event_interrupt_handler within the time_keeper fields the interrupt and

pulls the event at the head of the time event queue.

. The process table is modified to reflect the occurance of the event.

. The event _interrupt_handler inserts the process into the Scheduler.

. The Scheduler places the process back in the run queue.

. The event_interrupt_handler returns control to the Scheduler (rather than the

interrupted process)

. The waiting process is now at the head of the run queue and selected to run.
. Saved the context of the currently running process.

. Restore the context of the waiting process.

. Scheduler transfers control back to the waiting process.

Figure 22: Application Unbiocks

CMU/SEI-89-TR-19

127

12.1. Current Running Process

Visible value for Kernel primitives to use as identity of invoking process.

12.1.1. PDL

Current running process: process identifier

12.2. Process Run Queue

The process run queue is structured as a series of run queues, one for each legal process
priority. At each priority is a singly linked list of suspended processes, where the link to the
next process in that queue is embedded in the process table.

The head pointer points to the first process eligible to run at each priority. The tail pointer
points to the last process eligible to run at each priority. The error pointer is ar auxiliary tail
pointer that points to the last process with a pending error eligible to run. Expressed as a
record, the process run queue would look like:

Type run_gqueue_entry is record
head: process_identifier := null;
tail: - process_identifier := null;
error: process_identifier := null;
End record;
run_queue: array (ST.priority) of run_queue_entry;

This arrangement is not implemented in this version because of the inefficiencies of the
compiler-generated code. Instead, the structure is represented by three arrays, each
accessing a single component:

run_queue_ head: array (ST.priority) of process_identifiex
:= (others => null);

run_queue_tail: axray (ST.priority) of process_identifiex
:= (others => null);

run_queue_ error: array (ST.priority) of process_identifier
:= (others => null):

Thus, the final incarnation of the process run queue is shown in Figure 23.

12.3. Get_next

This algorithm assumes there will always be a process to run somewhere in the run queue.
This assumption is assured by the presence of the time_burner process with a priority lower
than any user priority.

128 CMU/SEI-89-TR-19

Priority
head Main Unit
0 tail]
error
1 head *| Process a Processb }— «... — Processc
(Lowest tail ¥
user
priority) | error
head » Processd Process@ }—— .. —»| Processt
2 tail ¥
error
head
Highest -
user | tail
priority P
head i
Highest Time Burner
user tail .
priority
+1 error
Figure 23: Run Queue
CMU/SE!-89-TR-19 129

12.3.1. Intertface

get_next return next process eligible to run

12.3.2. PDL

While we have not yat found a process eligible to run loop
goto the next priority level

end loop

return the process with the highest priority

12.4. Initialize

12.4.1. Intertace

initialize (initial number of processes)

12.4.2. PDL

Create all the internal Kernel processes

Log the main unit as the current running process
Place the Main Unit in the run gueue

Mark the Main Unit as running (which it is)

12.5. Insert_process

12.5.1. Interface

insert_process (process identifier)

12.5.2. PDL

Case current process state
When suspended | running | dead =>
Null...in the first two cases,
the process is already in the run queue:
in the last case,
the process can not be run again
When blocked =>
If the process is not in an error state then
If the priority level of the process is empty thaen
Insert process at head of its priority level
Adjust the starting search location (if needed)
Else the priority level is occupied
Insert process at tail of its priority level
Else :
If the priority level of the process is empty then
Insert process at head of its priority level
Insert process at error pointer of its priority level

130 CMU/SEN-89-TR-19

Gl - G B T G O 4 R =D AN NE B BN NN O .

Adjust the starting search location (if needed)
Else if the last process at this level is in an error state then
Insert process at tail of its priority level
Insert process at error pointer of its priority level
Else...the error pointer is in the middle of the queue
Insexrt process at error pointer of its priority level
End if
End if
Mark the process as suspended
End case

12.6. Remove_process

If the head and tail pointers access the same object, the tail pointer will be left pointing at a
dequeued object. This is not a problem, since the insertion algorithm is driven off the head
pointer and performing the "proper" maintenance is not worth the run-time penalty.

When a process is running, it is no longer in an error state, because if it was in an error
state, that state was cleared when the process was selected to run. Thus, there is no need
to check the error pointer when a process blocks. Schedule performs the needed
maintenance prior to resuming the process.

12.6.1. Interface

remove_process (pid of process to remove,
new state of process after its removal)

12.6.2. PDL

Case current process state
When running =>
Adjust queue head to point to next process (since the process must
be at the head of the queue)
Remove process from queue
Change the process state
When suspended =>
Loop thru queue looking for process
Adjust queue head tc point to next process
Update queue tail
Update errox pointer
Remove process from queue
Change the process state
When blocked | dead =>
Null...in the these cases, the process is not in the run queue
End case

CMU/SEI-89-TR-19 131

12.7. Schedule

12.7.1. Interface

procedure schedule (new priority for caller,
new preemption for caller,
new state for caller)

12.7.2. PDL

If called from an interrupt handler then
Return...the interrupt encapsulation will handle the
return correctly
End if

Save the new preemption
Case on new process state is
When running =>
Null...this is not a lagal invocation of the Scheduler,
80 ignore it
When suspended => the default case
If the new priority is different from the current priority then
Remove_process from the run queue
Update the process’'s priority
Insert_process back into the run queue...
this marks the process as suspended
Else
Mark the process as suspendesd
End if
When blocked =>
Remove_process from the run queue
Mark the process as blocked
Update the process’s priority
When dead =>
Remove_process from the run queue
Mark the process as dead
End case;

Get next process to run
Schedule_slice_event
If chcosen process is the current running process then
null...no context change
Else
If the tool interface is enabled
Log the process attributes for old process
Log the process attributes for new process
End if
Switch f£rom the current running process to the chosen process
End if ”
If no Kernel exception is pending for the process to run
End atomic

132 CMU/SEI-89-TR-18

Else...a Xernel exception is pending
End atomic
Raise the exception

End if

12.8. Schedule_ih

This entry is used exclusively by the interrupt encapsulation mechanism for returning from
preemptive interrupts to the scheduler.

12.8.1. Interface

achedul._ih

12.8.2. PDL

Save the new preemption
Mark the process as suspendad

Get_next process to run
Schedulc_plico_pvent

If chosen process is the current running process then
null...no context change
Else
If the tool interface is enabled
Log the process attributes for old process
Log the process attributes for new process
End if
Switch from the current running process to the chosen process
End if
If no Kernel exception is pending for the process to run
Return from interrupt level to user level (i.e. end atomic)
Else...a Kernel exception is pending
Return from interrupt level to user level (i.e. and atomic)
Raise the exception
End if

12.9. Schedule_slice event

12.9.1. Interface

nch.dnl._-lico_pv.nt (next process to run,
current running process)

CMU/SE!I-89-TR-19 133

12.9.2. PDL

(1)
(2)

(3)
(4)
(5)

If time slicing is enabled then
If the scheduler was entered by a slice expiring then
If next process to run is slicable then
Setup a slice event for the process
End if

Else, some other action caused the scheduler to be entered

If next process was the last process to run then
no slice operations are required
Else, a new process is going to run, so

Cancel the pending slice event for the old process

If the new process is preemptable then
Setup a slice event for the new process
End if
End if
End if
End if

. If time slicing has not been enabled (via an enable_time_slicing Kernel

primitive cail), then skip all of this. The overhead is a single test and branch.

. Finally, consider the case of slice_event_id = no_event. In this case,

one of two things has happened:

a. A slice event has just expired. In this case, the slice event handler
setsthe slice_event_idt0 no_event, and invokes the Scheduler.

b. A non-slicable process has just executed a blocking primitive. In this
case, slice_event_id would already be no_event.

In all cases, if the chosen process is slicable, insert a new timeslice event into
the event handler. Although it is possible that the next process to run is the
current process, this is of no concern here. All that must occur is to insert a
new slice event if the to-be-run process is slicable.

. If the chosen process is the current running process, then do nothing. This

means that:

a. There is a slice event (still) pending, so the slice has not expired.

b. The next process to be scheduled is the current_running_process, so
the reason the Scheduler is running is because an interrupt routine has
finished executing, and that routine did not elevate another process to
a priority higher than the priority of the current_running_process.

Therefore do nothing. The time used by the interrupt routine is implicitly
subtracted from the amount of time allocated to the timeslice.

. If the process that has been selected is not the current_running_process, then

cancel the pending timeslice for the current process. At this stage it is
irrelevant whether or not the new process is slicable. All that matters is that
the current process is about to be descheduled, so any pending timeslice
event must also be canceled, since the process is giving way to a higher
priority process.

5. If the new process that has been chosen to run is also slicable, then insert a

134

CMU/SEI-89-TR-18

-y I EE .

I e 0N am =N

timeslice event for the to-be-run process. In this manner, each time a process
unblocks, it starts with a new timeslice, irrespective of how much or how little
of its previously allocated slice it used up.

CMU/SEI-89-TR-19

12.10. Package Sch_debug

D e L L L L PP L ettt +
| |
B + I
| print_run_queue_full | |
D + |
l l
e e bt b + |
| print_zrun_queue_brief | |
o e + |
| l
N e + |
| print_current_running process | |
e + I
| |
et e et +

This debug package gives visibility into the internal Scheduler run queue and as such, it is
nested within the Scheduler package. It allows for printing of the entire run queue (either in
full or just the schedule attributes) or just the current running process. This package iterates
over the queue using ptb_debug entries to dump the needed data.

12.10.1. Interface

procedure print_run_ queue_full;
or

procedure print_run_queue_brief;
or

procedure print_ current_ running process;

12.10.2. Sample output

!SCH_DEBUG: Dumping run queue (briefly)
!{Process: TK_PROCESS
PTB: §$$ BEGIN SCHEDULE ATTRIBUTES $$§

PTB: state => SUSPENDED
PTB: priority => 1

PTB: preemption => ENABLED

PTB: block_time.high => 0
PTB: block time.low => 0
PTB: unblock time.high => 0
PTB: unblock_time.low => 12459720

PTB: $$$$ END SCHEDULE ATTRIBUTES $$S$$
'Process: Time burner
PTB: §$$$ BEGIN SCEEDULE ATTRIBUTES 35

PTB: state => SUSPENDED
PTB: priorxity => 11

PTB: preemption => DISABLED
PTB: block_time.high => 0
PTB: block_time.low => 0

136 CMU/SEI-89-TR-19

R .l Wy

aE e = G o T o G = sl EE En B eGE B O E

PTB: unblock_ time.high =>

PTB: unblock_time.low => 0

PTB: $$$$ END SCHEDULE ATTRIBUTES $$$$
!SCE_DEBUG: End of Dump

CMU/SEI-89-TR-19

137

13. Time Keeper

et +

| |

e + (
| Initialize | |
e DL L e L L DL P T + |
| |

L e e ettt + !
| Insert Event | * |
e e L B L DL P T + |
| |
D + |
| Remove Event | * |
e D it + |
| l

e it e + |
| Adjust Elapsed Time | * |
et e L L P Tt + |
| |

e e L L L S s + |
| Reset Epoch Time | * |
i + I
|

|

Time_keeper encapsulates all of the time related events:

e Alarms

¢ Claim timeouts

e Enable_time_slice timeouts

* Receive_message timeouts

e Send_message_and_wait timeouts
¢ Synchronize timeouts

» Wait timeouts

it is implemented using a timer and a pending event queue, ordered by absolute time of
event occurrence (i.e., the next event to occur is at the head of the time event queue).

Each process may have at most two events pending simultaneously:

e glarm

e one of: claim timeout, receive_message timeout, send_message_and_wait
timeout, synchronize timeout, and wait timeout

The event timer is:

* a countdown timer loaded with the number of ticks to delay until interrupt

e the timer counts down to O then generates an interrupt

e the maximum count down value is 32 seconds

s events greater than 32 seconds are divided into 32 second chunks (thus if an

138 CMU/SEI-88-TR-19

N S ay Ay o ay iy oar Iy Eay A O s

,

event is set to occur in 60 seconds, two interrupts occur: one at 32 seconds and
another one ~28 seconds later)

In Figure 24 illustrates the situation where the inserted event replaces the event currently at
the head of the time event queue. While Figure 25 traces the actions that occur when the

event actually occurs.

CMU/SEI-89-TR-19

139

Event
Timer

Process
Table

H

o N OO,

Time Event
Queue

. The application issues a set_alarm (one_second).
. Alarm_management checks the current alarm status of the process (based on

information in the process table) .

. Insert an alarm event into the time_keeper. ‘
. Read the time event queue and determine that the alarm event should be the

next event to occur.

. The current event timer is canceled.

. The event timer for the alarm is set.

. The alarm event is enqueued in the time event queue.

. The process table is updated to reflect the existence of the alarm event for the

process.

. Control returns to the set_alarm.

Figure 24: Setting an Alarm Event

140

CMU/SEI-89-TR-19

.
¥

;
g

P Event
> Timer

Scheduler 7
~

~

Process Time Event
Table Queue

1. The alarm timeout expires and the timer generates an interrupt.

2. The event_interrupt_handler fields the interrupt and examines the event at the
head of the time_event_queue.

3. Since the event's time has passed, alarm event processing is performed.
4. The event's occurrence is logged in the process_table.

5. The event timer is configured for the next event in the time event queue (if
such an exists).

6. The alarmed process is removed for the run queue and reinserted at its alarm
resumption priority.

7. Scheduler resumes the alarmed process with the alarm_expired exception
pending.

Figure 25: Event Expiration

CMU/SEI-89-TR-19 : 141

13.1. Initialize

The initial allocation of the time event queue accounts for all possible events generated by
all processes known to this node. The initial allocation is computed as follows:

2 * (maximum number of processes on this processor) + 1

13.1.1. Interface

Initialize

13.1.2. PDL

Create the time event queue
Install the event_interrupt_handler for the event timer

13.2. Insert_event

13.2.1. Interface

insert_event (new event,
type of event,
time of event,
pid of associate process,
pointer to enqueued event)

13.2.2. PDL

If the event’s time has already passed or is zero then
Process_event_ immediately
Return a null pointer (since the avent wasn’t enqueued)
Else
Begin atomic
If the time event queue is empty then
Set the timer for new event
Else
If new event expires bafore the event at the
time event queue head then
Cancel the timer for the current pending event
Set the timer for new event
End if
End if
Enqueue the new event in the event queue
Set pending activity for the process reflecting event type
End atomic
Return pointer to enqueued event
End if

142 CMU/SEI-89-TR-19

S G EE Ay A T G B Ay am o A b aay ey e aE W e

R N D el W Eh e & of P an Ay s e

13.3. Remove_event

13.3.1. Interface

remove event (identifier of event to remove)

13.3.2. PDL

Begin atomic
Delete the event
Grab the avent at the head of the time event queue
If the deleted event was to expire before the event now at the
head of the time event quesue then
Cancel the timer pending on the deleted event
Set a timer for the event at the time event queue head
End if
Reset the pending attributes flag for the process associated with
the event
End atomic

13.4. Adjust_elapsed_time

13.4.1. Interface
adjust_elapsed time (elapsed time adjustment)

13.4.2. PDL

Cancel any pending event timer
Begin atomic
While there are more events in the time event queue loop
Dequeue the next event
Parform the adjustment
End loop
Set an event timer to expire immediately...thus processing all
the events whose time has passed as a result of the adjustment
End atomic

13.5. Reset Epoch Time

13.5.1. Interface

reset_epoch_time (new tima of day)

CMU/SEI-89-TR-19 143

13.5.2. PDL

Cancel timeout for current pending event
Begin atomic
Compute increment = current time of day - new time of day
While there are more events in the time event queue loop
Dequeue the next event
Case time class of event
When elapsed =>
Add the increment to time in ovent
Enqueue the modified event
When epoch =>
Enqueue the unmodified avent
End case
End loop
Adjust_epoch_time inside the Clock
Set an event timer to expire immediately...thus processing all
the events whose time has passed as a result of the adjustment
End atomic

13.6. Event_interrupt_handler

13.6.1. interface
N/A

13.6.2. PDL

Acknowledge the interrupt
Read the current time
While the time event queue has avents yet to process loop
Dequeue the event at the head of the time event queue
If the event has expired then
Process_event
Else
Enqueue the unprocessed event
Set the timer tc expire at the time indicated by the event
at the head of the queue
Exit the loop
End if
End loop

13.7. Process Event

The processing for the expiration of a slice event is needed to allow the next process at this
priority of the current_running_process to run. Removing and immediately reinserting a
process has the effect of moving the process to the end of the run queue at its priority level.

144 CMU/SEI-89-TR-19

-l -, .

—_

13.7.1. !nterface

process_event (event to process)

13.7.2. PDL

Case on the type of event to process
When an alarm has expired =>
If the process is not blocked then
Ramove_process from the run queue
End if
Reset alarm pending paramaters
Insert_process into run queue at the alarm resumption priority
Release any allocated datagram buffers
Cancel any other pending activity (as below)
When a receive times out =>
Reset the pending activity parameters
Setup the timeout exception for propagation
Place the process back in the run queue
When a semaphore claim operation times out =>
Reset the pending activity parameters
Setup the timeout exception for propagation
Place the process back in the run queue
When a wait operation times out =>
Reset the pending activity parameters
Place the process back in the run queue
When an acknowledged send operation timas out =>
Reset the pending activity parameters
Remove the message from the receiver’'s massage Jqueue
Send a "NAK" message to the sender
Delete datagram
Free datagram
When time slice expires =>
Reset the slice event parameters
If the sliced process is running then
Remove_process from the run queue
Insert_process back into the run queue
End if
End case

13.8. process_event_immediately

The processing for the expiration of a slice event is needed to allow the next process at this
priority of the current_running_process to run. Removing and immediately reinserting a
process has the effect of moving the process to the end of the run queue at its priority level.

CMU/SEI-89-TR-19 145

13.8.1. Interface

process_event immediately (event to process)

13.8.2. PDL

Case on the type of event to process

When an alarm has expired =>
If the process is not blocked then
Remove_process from the run queue
End if
Reset alarm pending parameters

Insert_process back run queue at the alarm resumption priority

Release any allocated datagram buffers

Cancel any other pending activity (as below)

Schedule
When a receive times out =>

Reset the pending activity parameters

Setup the timeocut exception for propagation
When a semaphore claim operation times out =>

Reset the pending activity parameters

Setup the timeocut exception for propagation
When a wait operation times out =>

Reset the pending activity parameters

Place the process back in the run queue
When an acknowledged send operation times out =>

Reset the pending activity parameters

Remove the meassage from the receiver’'s message queue

Send a "NAK" message to the sanderx

Delete datagram

Free datagram

When time slice expires =>

Reset the slice event parameters

If the sliced process is running then
Remove process from the run queue
Insert_process back into the run queue

End if

End case

13.9. Time Event Queue

The time event queue is the doubly linked structure that maintains the list of pending events.
The characteristics of the time event queue are:

» Ordered by expiration time, with each event in epoch time format

s Insert places event in its correct position in the queue (this is a high frequency

operation)

¢ Random deletion of queue objects occurs frequently as unblocking events

occur and the associated timeouts are canceled

146

CMU/SEI-88-TR-19

A g 2
A

Ol U W BN O N UE TR wE vn e ol B S N UE ay am M

e The structure is periodically reorganized (whenever the user modifies the local
processor clock)

e Each entry in the queue is a record structure containing:
«Kind of event: alarm timeout, claim timeout, receive timeout, send
message and wait timeout, timeslice, or wait timeout
« Time class: epoch or elapsed
* Expiration time
« process identifier
Together, all these facets yield the structure shown in Figure 26.

time_event_queue

next !

»

'/"\ 7 A
g—4~

kind_of_event alarm send_with_
(wait_timeout) ACK_timeout

N

time_class
(elapsed)

expiry
(5 seconds)

process_{D "arthur * “vivian °

Figure 26: Time Event Queue

CMU/SEI-89-TR-19 147

13.10. Package time_keeper_debug

+ ---------------------------------------
|
bl e i et +
| print_time event_gqueue |
e r et e m e .- - - - - - - <+
|
D e e ettt bbbt bl bt +
| print_time_event_queue_entry |
R e +
]
+ ———————————————————————————————————————

This package is nested within the time_keeper package and allows for the diagnostic
printing of the entire time event queue or individual entries within the time event queue.

13.10.1. Interface
print_time_ event_ queue

and

print_time_event_queue_entry (event identifier)

13.10.2. Sample Output

TK: ##### BEGIN DUMP OF TIME EVENT QUEUE #####

by SRR 2 2 2 T2 DT RTEE TEPSITS ITE I I S R YL 2
TK: kind of event => WAIT TIMEOUT
TK: time class => ELAPSED
TK: expiry.high => 0
TK: expiry.low => 60445590
TK: process name => TK PROCESS

™ : ***********************;*************************

TK: ###### END DUMP OF TIME EVENT QUEUE ######

148

CMU/SEI|-88-TR-19

[

14. Tool Logger

This package is responsible for collecting the monitored attributes, formatting the data into a
tool interface message (shown in Table 4), and linking the message into the message queue
of the appropriate too! process. To accomplish the logging activity, this package is called

from strategic points in the Kernel, namely:

e CM.send_message and CM.receive_message: to log message attributes and

message contents.

¢ SCH.schedule, SCH.schedule_ih, and PAM.kill: to log process attributes.

If for any reason, a logging cannot take place, no tool interface message is formatted and no
exception is generated (the request is simply ignored).

CMU/SEI-88-TR-19

149

14.1. Log_process_attributes

The time is always measured as the first action immediately after it has been verified that
logging should happen.

14.1.1. Interface

procedure log_process_attributes
(process whose attributes are to be logged)

14.1.2. PDL

If it is ok to log the needed attributes then
Log the time the tool message formatting began
Format the tool message header
Collect the process attributes
Copy the process attributes to the tool message
Enqueue the tool message on the tool process’s message queue
If the tool process is pending on a message then
Insert the tool process into the Scheduler
End if
End if

14.2. Log_message_attributes

The time is always measured as the first action immediately after it has been verified that
logging should happen.

14.2.1. Interface

Procedure log message attributes
(process whose attributes are to be logged,
sender of the message being logged,
receiver of the message being logged,
tag of the message being logged,
length of the message being logged)

14.2.2. PDL

If it is ok to log the needed attributes then
Log the time the tool massage formatting began
Format the tocl message header
Collect the massage attributes
Copy the message attributes to the toocl message
Enqueue the toocl message on the tool process’s message gqueue
If the tocl process is pending on a massage then
Insert the tocl process into the Scheduler
End if
End if

150 CMU/SEI-89-TR-19

14.3. Log_message_contents

The time is always measured as the first action immediately after it has been verified that
logging should happen.

14.3.1. Interface

Procedure log message_contents
(process whose attributes are to be logged,
length of message being logged,
text of massage being logged)

14.3.2. PDL

If it is ok to log the needed attributes then
Format the tool message header
Copy the massage contents to the tool message
Enqueue the tool message on the tool process’s message queue
If the tool process is pending on a massage then
Insert the tool process into the Scheduler
End if
End if

14.4. prepare_to_log

This is an internal procedure. [t is always executed as the first activity of any logging
activity.

14.4.1. Interface

Procedure prepare_ to_log (process whose attributes are to be logged,
what process information is being collected,

boolean telling the logger to proceed,
datagram to hold the tool message)

14.4.2. PDL
If the tool interface is enabled for this process and
there is a tool process selected for this attribute and
there is room in the message of the tool process and
there is a datagram available then
it is ok to log the attribute information
End if
CMU/SEI-89-TR-19 ' 151

CMU/SEI-89-TR-19

152

IV. Communication Subsystem

This Part describes the interfaces, algorithms, and data structures that implement the
network.

CMU/SEI-89-TR-19 15)

1. Communication Overview

All messages sent by the application and by the Kernel are stored in Kernel bufters, called
"datagram buffers.” The datagram buffers are maintained in the shared memory common to
the Kproc and Nproc. The datagram buffers are initially allocated from the shared memory
by the Nproc. Following this, the datagram buffers are readable and writable by both
processors. To satisfy the requirements of the Kemel Facilities Definition, the following
programming assumptions have been used:

1. The send_message Kemel primitive must be non-blocking (Section 19.1.1 of
the Kernel Facilities Definition). The network may be busy at the time an
application process wishes to send a message. To prevent the process from
blocking, the application buffer must be copied immediately into a Kernel
datagram bufter.

2. When a message is received by a node, the process to which the message is
addressed might not be pending on a receive message Kernel primitive
(Section 19.1.3 of the Kernel Facilities Definition). Consequently, the incoming
message must be stored in a Kernel buffer, and later copied into the
application bufter.

3.

All messages whose destination process is on a remote processor must be copied twice —
once on the originating processor from the application buffer to a Kemel buffer, and again at
the remote node from a Kemel buffer to an application buffer.# The flow of data are
diagrammed in Figure 27. Certain optimizations reduce the number of times that data is
copied when both the sending and receiving process are located on the same processor.

Sending Receiving
Process Process
Applicaton Appticaion | _* Kernel Kemel * Application
Data . Bufter Butter DARK Network Butter ™ Bufter

* Copy operations mentioned in text

Figure 27: Data Flow Through the Kernel and Network

Once a message has been copied into a datagram buffer by the Kernel and enqueued into
the Nproc output queue, the Nproc assumes all responsibility for transterring the message to
the remote node.

The remainder of this chapter covers the intemal Kernel abstractions necessary to

‘The messages must be placed in an application buffer by the application prior to the call to the
send_message Of send message_and wait Kernel primitives, and in a Kernel buffer as the message is
intially read off the network, prior to notifying the Kproc of an incoming message. These transactions are not
considered in the count of copy operations.

154 CMU/SEI-89-TR-19

implement the Kproc/Nproc communication and interaction. In particular, Sections 8.1 and
8.2 outline and diagram the transmission of a message from one Kproc to another via the
network.

1.1. Design Decisions

A number of design decisions have been made concerning the implementation of the
communications algorithms. These are:

1.1t is assumed that the Kproc and Nproc have some mechanism of
synchronization via semaphores. Two mechanisms of processor
synchronization are available: :

a. Using the MC68020 CAs instruction to set semaphores used by the
two processors. This mechanism is the one currently in use, although
it is machine-specific.

b. A hardware-independent algorithm written entirely in Ada, derived from
the algorithms in [Raynal 86). This algorithm has been tested and
executes correctly, aithough it is slighty slower than the
machine-specific version. This version is not being used, although it is
supplied as commentary in the body of LLH.5

These semaphores will be used to lock resources shared by the Kproc and
Nproc, such as free lists and message queues (datagram buffers are stored in
message queues; the queues must be locked before any enqueueing or
dequeueing can be performed).

2. There is a single set of datagram buffers available to both the Nproc and the
Kproc, and it is allocated in the megabyte of shared memory common to both
processors. This set of buffers is used both for sending messages from the
Kproc to the network, and by the Nproc as it receives messages from the
network.

3. The set of datagram buffers comprises three pools of buffers (described in
greater detail in Section 2.3). Each pool has its own free list. Whenever the
Kernel allocates a buffer, it looks in the free list of the appropriate size.

4.Only the actual number of bytes in the application message (plus the
necessary Kernel overhead) are transmitted on the network, even if a buffer
larger than the application message is used.

5. Each message originating on a node (a Kproc/Nproc pair) is sent completely
before transmission of another message originating on the same node is
begun.

6. Messages that are passing through a node are be interleaved with any
message that may be originating on that node. This does not present a
problem, since each 32 bits of data that are transmitted have the sender and
receiver encoded in the top 16 bits. The node that is "downstream" of the

The short name LLH is used as an Ada code abbreviation for the package low_level hardware. For a
complete list of all the package short names that are used in this document, please refer to Appendix H.

CMU/SEI-89-TR-19 155

sending node is able to identify the sender and recipient of each 32-bit packet
of a datagram.

7. Local optimizations are performed for local transmission of messages (Section
10.1.29 of the Kernel Facilities Definition). The application program need not
know the location of the destination of the message; however, the Kproc
speeds message transmission when it is known that the source and
destination processes are both resident on the same processor.

8. Implementation of the buffers is via doubly unked lists. Allocation from the free
list may be arbitrary (i.e., it does not matter which free pool is used, so long as
the buffers in it are of the appropriate size), aithough the send and receive
queues are absolutely First-in First-Out (FIFO). There are no message
priorities (Section 19 of the Kernel Facilities Definition).

9. The algonithms used for datagram buffer allocation, enqueueing, dequeueing,
and deallocation are the same on both the Kproc and the Nproc. Wherever
needed, semaphores are used to guarantee the atomicity of operations.

Although this design is specified for a single Kproc and a single Nproc comprising each
processor node, the algorithms that are described below are sufficiently flexible to allow for
multiple Kprocs to be associated with a single Nproc.

156 CMU/SEI-89-TR-19

2. Data Structures

The following data structures are used to implement data transfer using the Kproc and
Nproc model that we have estabiished.

2.1. Datagram Data Structures

A datagram is the Ada type used by the Kernel to keep track of messages. Datagrams are
allocated from the free lists with the subroutine alloc_dg (Section 4.6), enqueued into the
receive and transmit queues with the enqueue subroutine (Section 4.2), removed from
these queues with the dequeue subroutine (Section 4.3), and returned to the free lists with
the free_dg subroutine (Section 4.7). Other subroutines support the ability to get the first
element from a queue without dequeueing it (get first, described in Section 4.4), and to
delete an arbitrary element from a queue (delete, described in Section 4.5).

Datagrams are never referenced directly, but are instead always accessed through
datagram pointers. For consistency, the datagram that is sent from one process is identical
to the datagram that is received by another. The Nproc knows nothing about the format of
messages other than their size, source, and destination. The datagram contents and
access mechanisms are described below.

2.2. Datagram_Pointer

The type datagram_pointer is defined as follows:
type datagram pointer is access datagram;

A datagram pointer is simply a pointer to a datagram. All references to datagrams
within the Kernel are made with this access type.

2.3. Datagram_Class

Datagrams are divided into four distinct classes:
type datagram class is (small, large, kernel, queue_head);

The different datagram classes are used for a number of reasons:

1. A significant space savings can be effected by allocating a small-sized
datagram to the application when a small message needs to be transmitted,
and only allocating a large datagram when larger application messages need
to be sent.

2. Aithough variant records would be the most natural way to accomplish this,
the code that our compilers generated was abominably inefficient. Therefore,
it was decided to use unchecked conversion to coerce the required
number of datagram pointer types into a single type called

CMU/SEI-89-TR-19 157

datagram pointer. To distinguish between the different sizes of
datagrams associated with the pointers, a field called class of type
datagram class is presentin each datagram.

3. Since variant records are not being used, rather than have an additional type
of structure for queue headers, a class called queue head is used to
distinguish "real” datagrams from datagram queue headers. A queue header
accesses a datagram that contains no data buffer (or rather, has a buffer of
zero size), and is used simply as the access mechanism for a queue. The
number of queues in use on a processor is determined at runtime as
processes are created - there is one queue for every process, in addition to
the free queues and input and output queues.

The data buffer sizes associated with the various datagram classes (plus some additional
space for Kernel encapsulation of datagrams) are:

larg

1

{
g
®
®
3
i
Y

CG.maximum message_size bytes (rounded up to an integral number

of 16-bit words).

One tenth of CG.maxzimum message_size bytes (rounded to an
integral number of 16-bit words). If this fraction is smaller than 32 bytes,
the smaller buffer pool is not used. If this fraction is larger than 128
bytes, the value of 128 bytes is used.

NC.nct_entry’size bytes (rounded to an integral number of 16-bit
words). This buffer size is used to ensure that an adequately sized
buffer is available to initialize the DARK network, even if the application
specifies that CG. maximum message size is zero bytes.

No data buffer is allocated for this class of datagram, because it is only
used as a queue header, and not for data transmission.

2.4. Datagram

A datagram is divided into a local optimization component (which contains information for
processing locally optimized messages), a header component (which describes the contents
of the data, contains the various maintenance information, etc.) and a data component
(which contains the actual body of the application or Kernel message). The definitions of
these two components are:

158

CMU/SEI-89-TR-19

type datagram header is

record
naxt : datagram pointer;
prev : datagram pointer:
class : datagram class’
buffer_size : buffer range;
msg_count : hw_long_natural;
semaphore : hw_long_integer;
message length : buffer_ range;
operation : kernel_ operation;
remote_timeout : KT.kernel_time;
sender : NG.process_index type:
receiver : NG.process_index_type:
message_tag : CG.message tag_type:
message_id : massage_identifier:;
checksun : hw_integer;

end record;

type copy_action_types is (no_copy_necessary,
copy_from datagram buffer,
copy_£from senders_ buffer);

type local optimization_record is

record
do_optimization: boolean := false:
copy_action: copy_action_types := no_copy_necessary’

copy_£from address: hw_address;
end record ;

type datagjram is
racord
local: local optimization_ record;
header : datagram header:
buffer : data buffer(l .. CG.message_ length type’last);
end record:

The Local component is used only when the receiver and sender are on the same
processor. There are three pieces of information referenced by Local:

dc_optimization
A flag used to indicate the message has been locally sent and shouid
be processed appropriately.

copy_action Indicates one of three actions the Kernel shouid take when copying the
message to the receiver's buffer. The action is affected by the level of
optimization that has taken place and reflects the condition of the
receiver when the sender issued the call to send. No_Copy_Necessary
is set when the receiver was waiting and the message was copied
directly from the sender’s buffer to the receiver's buffer. A copy in and
out of the datagram buffer has been avoided.
Copy_From_Senders_Buffer is set when the message was not able to
be copied into the receiver's buffer and the sender issued a

CMU/SEI-89-TR-19 159

Send_Message_And_Wait. This represents the next best level of
optimization. The copy is still made directly into the receiver's buffer
from the sender's buffer, but only after the receiver is ready.
Copy_From_Datagra_Buffer is set when it is not possible to copy
immediately into the receiver's buffer and the sender issued a
Send_Message. In this case, the sender could not be blocked and the
message had to be copied into the buffer of the datagram. At some
point when the receiver is ready, the Kernel will copy the message into
the receiver’s buffer from the datagram.

copy_from address
Address of sender's Dbuffer when the Copy_Action is
Copy_From_Senders_Buffer. At the point when the receiver is ready to
receive the optimized message the Kernel uses this address to copy to
the receiver's buffer from the biocked sender’s buffer.

At best, during local optimization the transmission overhead of the network can be avoided

and, in some cases, copying into the buffer of the datagram.

The description of the various fields within the header component are as follows:

next This field contains the pointer to the next datagram in the queue and is
used to maintain the doubly linked lists. This field and a number of
fields following are not transmitted across the network. They are used
only on the node that actually "owns" the datagram and are not
considered part of the message that is shipped between processors.

prev This field contains the pointer to the previous datagram in the queue
and is used to maintain the doubly linked lists. This field is not
transmitted across the network and is maintained locally by each
processor node.

buffer size This field is only used in queue headers and is ignored in datagrams. It
contains the size of the data buffer available to the application in this
datagram (and not the number of bytes in the application message).
This field is not transmitted across the network and is maintained locally
by each processor node.

msg_count This field is only significant in queue headers and contains the number
of messages presently in the queue. This field is not transmitted across
the network and is maintained locally by each processor node.

semaphore This field is used by both queue headers and datagrams, but in different
ways.

¢ In the queue headers, this field contains the interprocessor
semaphore for locking the queue for exclusive use. It
contains either LLH.free (indicating that the queue is
available for use) or LLH .busy (indicating that the queue is
presently busy, and is being modified). In queue headers,
this field is manipulated with the LLH.P and LLH.V
subroutines, and ensures that the Kproc and Nproc do not
manipulate the queues simuitaneously.

¢ In individual datagrams, this field contains either LLH . free
(indicating that the datagram is free from association with

160 CMU/SEI-89-TR-19

message_length

operation

remote_timeout

sender

receiver

message_tag

message_id

any queue), or LLH.busy (indicating that the datagram is
currently in a queue). In the former case, any attempt to
delete the datagram from a queue will be ignored. In the
latter case, any attempt to re-enqueue the datagram will be
ignored. In datagrams, this field is manipulated by simply
setting the appropriate value while in an atomic region.

This field is not transmitted across the network and is maintained locally
by each processor node.

The number of bytes in the message text, as supplied by the
application. This value will always be less than or equal to the
buffer_ size field. This field, and all foliowing fields are transmitted
across the network, and are considered part of the message that is sent
and received.

This field contains one value from the enumerated type
DGG.kernel operation for both Kermel to Kernel (e.g.,
DGG.kernel message Of DGG.init_protocol_message) Of
application (e.g., DGG.blind_send or DGG.acknowledged send)
messages, depending on the type and originator of the message. This
item is generated by the Kernel.

This field is only used when a send_message_and_wait I§
transmitted. The value specified in this field is the elapsed time as
calculated on the sending process.

The process_index of the process that is sending this message. In
the case of DGG.nak_process_dead and related messages, the
sender field will be what would have been the process_index of the
process that is being marked as dead. Because the sender field
contains both a process number and a processor number, the sender
field uniquely identifies a process within the DARK network.

The process_index of the process that is supposed to receive the
datagram. Because the receiver field contains both a process number
and a processor number, the receiver field uniquely identifies a process
within the DARK network.

in the case of an application-generated message, this field contains an
application-supplied message identifier that is passed to the application.
In the case of a Kemel-generated message, this field contains a value
from the enumerated type DGG rernel tag (i.e., ack, nak,
kill_process, etc.), which determ...es the action to be taken upon
receipt of the datagram.

A sequence number assigned by the Kemel for use with
send_message_and_wait and the associated Kernel-to-Kerel reply.

checksum A checksum of the Kernel datagram message. This checksum is
supplied by the transmitting Nproc and is verified by the receiving
Nproc. Presently, the checksum is not calculated, and is always
supplied as 0 — this field is supplied for future network enhancements.
The array bounds of the data buffer field are defined to be
1 .. CG.message_length_type’last. No datagram is ever actually allocated with a
CMU/SEI-89-TR-19 161

data buffer of this size — this range is included to allow for datagrams of size
CG.maximum message_size and smaller (as described in Section 2.3) to be allocated
and coerced, using unchecked_conversion, into this type. Because of the very large
upper bound on the array range of data_buffer, Nno boundary check exceptions are ever
raised (and it is assumed that the subroutines in datagram_management are sufficiently
robust for this not to be a problem).

162 CMU/SEI-89-TR-19

|

3. Semaphores and Atomic Regions

The Kproc and Nproc subprograms for datagram manipulation use both interprocessor
semaphores and atomic regions to protect Kernel data structures. Interprocessor
semaphores are manipulated with the subroutines LLH.P and LLH.V (these subroutines
implement a classical Dijkstra P/V semaphore system). Atomic regions are maintained by
the subroutines LLH.begin atomic and LLH.end_atomic. Each mechanism has a
different purpose.

The semaphores used in the message queue headers are designed to prevent
simuitaneous access of the datagram queues by both the Kproc and the Nproc. Since the
amount of time required to access the queue headers is short, LLE.F is a blocking (i.e.,
busy/wait) operation — that is, the processor that calls LLH.P loops until the semaphore
becomes available.

Atomic operations are used in conjunction with semaphores to prevent queue operations
from being interrupted by the actions of an interrupt service routine operating on the same
processor. In this way, only a single access to the queue may be made on a single
processor.

In all the subroutines described in Section 4, both atomic regions and semaphores are used.
The primary reason for this is best illustrated with the following two scenarios:

Scenario 1;

a. While executing a BIO.send process_datagram, the Kproc
enqueues a datagram being sent locally to a process receive queue.

b. At the same time, the Nproc receives a datagram from a different
processor node targeted for the same local process. The Nproc
interrupts the Kproc.

c. The Kproc interrupt service subroutine enqueues the incoming
datagram into the process receive queue.

If atomic regions are not used to surround the enqueue operations, the Kproc
interrupt service routine (step c) could begin executing while the main-line
Kproc subroutine (step a) was still accessing the queue. Either the interrupt
service routine will block forever (since the semaphore guarding the queue is
presently claimed by the main-iine Kproc code), or the interrupt service routine
would corrupt the queue currently being manipulated by the main line code (if
the semaphore only precludes access by the Nproc).

Scenario 2:
a. The Kproc, executing a BIO.send_kernel_datagram, dequeues a
datagram from the free queue so that it may build a Kernel message.

b. At the same time, the Nproc receives a packet from an incoming
datagram. It also attempts to dequeue a datagram from the free
queue.

CMU/SEI-89-TR-19 163

If interprocessor semaphores are not used to surround the dequeue
operations, both the Kproc and Nproc could conceivably be accessing the
same free queue at the same time, each corrupting the accesses of the other.

Other scenarios can easily be envisioned that couple the conflicting actions of all of the
datagram manipulation subroutines described in Section 4. It is necessary to use both
atomic regions (to prevent datagram corruption via an interrupt service routine accessing the
same datagram queue) and interprocessor semaphores (to prevent corruption by the other
processor accessing the same datagram queue) to lock datagram queues for subsequent
manipulation. Only by using both mechanisms on the Kproc can the integrity of the
datagram queues be guaranteed.

On the Nproc, it is not necessary to use both mechanisms; interprocessor semaphores
suffice. In the Nproc, some datagram queues are accessed only by interrupt service
routines, and others by only main-line (i.e., non-interrupt level) code. Because of this,
atomic sections are not needed (since interrupt service routines are themselves not
interruptibie). See Section 7 for more details.

164 CMU/SEI-89-TR-19

4. Datagram Management

The following subroutines are used to manage the datagrams within the Kemel. These
subroutines are used to aliocate datagrams from free queues, enqueue them into input and
output queues, and return them to the free queues when the Kernel is done with them. The
application program never sees these subroutines, nor need it ever be aware that
datagrams are used for message transmission.

4.1. new_queue

The new_gueue subroutine is used to create a new datagram queue header. This
subroutine must be called before any enqueue operations can be performed.

The queue is initialized with a msg_count field of O (i.e., no massages), a class field of
queue_head (i.e., this datagram only serves as a queue header, and is never allocated with
alloc_dg or dequeue, Sections 4.6 and 4.3), and a buffer si:ze field of O (i.e., no data
buffer associated with the datagram). All datagram queues are maintained as doubly linked
lists, for reasons described in Section 4.5, and are created with this subroutine.

Since the collection of datagrams ‘nat the Nproc allocates is in the shared memory region,
the datagram queues associated with them must also be in shared memory. The Kproc, on
the other hand, allocates datagram queues in its own local memory (to impiement the
per-process input queues). Because of this difference, new_gueue tests to see whether it
is weing called from the Kproc or the Nproc.

4.1.1. Interface

function new_gqueue
return DGG.datagram pointer;

4.1.2. PDL

if is_Kproc then
allocate datagram from local heap

else

allocate datagram from shared mamory heap
end if
next := sealf reference -- Circular list
prev := self reference -- Cizx~ular list

class := queue_head
buffer _size := 0
msg_count := 0
semaphore := free

CMU/SEI-89-TR-19 ’ 165

4.2. enqueue

The encueue subroutine is used by the Kernel to place a datagram at the tail of a queue.
The engueue subroutine, in conjunction with the dequeue subroutine (Section 4.3),
provides a FIFO queueing system for datagrams.

The engueue subroutine places the specified datagram at the tail of the specified queue.
The msg_count field in the queue head is incremented by 1 for each datagram enqueued.

4.2.1. Interface

procedure enqueue (
dg : in DGG.datagram pointer;
queue : in DGG.datagram pointer
)i

4.2.2. PDL

begin atomic ragion

lock queue semaphore

if datagram ig not busy (i.e., not in a queue) then
link datagram into tail of queue
mark datagram as bucy (i.a., in a queue)
queue.msg count := queue .msg count '+ 1

else
null

end if

unlock queue semaphorae

end atomic region

4.3. dequeue

The dezueue subroutine is used by the Kernel to remove the first datagram from a queue
and return it to the caller. The dequeue subroutine, in conjunction with the engueue
subroutine (Section 4.2), provides a FIFO qu2ueing system for datagrams.

The d=gueue subroutine removes the first datagram (i.e., the head of the queue) from the
specified queue. The msg_count field in the queue header is decremented by 1 for each
datagram enqueued. If no datagrams are available, dequeue. returns null.

4.3.1. Interface

function dequeue (
queue: in DGG.datagram pointer
) return DGG.datagram pointaer;

166 CMU/SEI-89-TR-19

4.3.2. PDL

begin atomic region
lock queue semaphore
if queue.msg_count > 0 then
unlink first datagram in queue
mark datagrar as free (i.e., not in a queue)

queue.msg count := queue.msg count - 1
value_to_return := datagram

else
valie_to_return := null

end if

unlock queue semaphore
and atomic region
return value_ to_return

4.4. get_first

The get first subroutine is used to return a pointer to the first datagram in a specified
queue without actually dequeueing it. It is used by the Kernel receive message and
purge_message_gqueue subroutines.

The get £:irst subroutine returns a pointer to the first datagram in a queue, but does not
delete the datagram from the queue. This subroutine is used in conjunction with delete
instead of dequeue to eliminate some race conditions. These conditions are documented in
Appendix C.

4.4 1. Interface

function get_£irst (
queue : in DGG.datagram pointer
) return DGG.datagram pointer;

4.4.2. PDL

begin atomic region

lock queue semaphore

i1f queue.msg_count > 0 then
copy pointer to first datagram
value_to_return := pointer

alse
value to_return := null

end if

unlock queue semaphore

end atomic region

return value_to_return

CMU/SEI-89-TR-19 167

4.5. delete

The dele<e subroutine is used to remove a specified datagram from a named queue. It is
used by the Kernel to remove a specific datagram from a queue prior to releasing it to the
free pool. A primary use of this subroutine is to delete a datagram (from anywhere in the
queue) whose timeout has expired. Although messages are enqueued and dequeued in the
process queues in FIFO order, timeouts do not necessarily occur in the same order. This
subroutine is provided to enabile the deletion of a timed-out message from the middle of the
queue.

The zZele-e subroutine removes the specified datagram from the specified queue. It
operates on the assumption that the datagram is in the queue. No checking is done to
ensure that this is the case; checking requires an O(n) algorithm, while safe use of a
non-checking algorithm reguires an O(7) algorithm. Should the test condition be faise, the
datagram queue will be damaged and subsequent operations on the queue will be
jeopardized. This subroutine is used in conjunction with get £:irst instead of degueue tO
eliminate race conditions. These conditions are documented in Appendix C.

4.5.1. Interface

procedure deleta (
dg : in DGG.datagram pointer;
queue : in DGG.datagram pointer
Y

4.5.2. PDL

begin atocmic region
lock queue semaphore
if datagram is busy (i.e., in a queua)
unlink specified datagram
mark datagram as free (i.e., not in a queue)
else
null
end if
unlock queue semaphore
end atomic ragion

4.6. alloc_dg

The allsc_dg subroutine is called by the Kernel when it needs to allocate a new datagram
for message transmission. Note that this subroutine differs from both dequeue and
get firs+, which return a datagram from a specific queue. Alloc_dg searches the
available free queues and returns the smaliest available datagram that fiis the si:ze
parameter requirements.

The allzz

4g subroutine dequeues a datagram with a data bufter of at least the specified

168 CMU/SEI-89-TR-19

Gl v B ohm 0 G & o= B N .

size from the first available free queue. [f no datagrams are available, it returns null.
However, if the requested size is larger than the available buffers (a situation that should not
happen, due to Ada compile-time or runtime range checking), it raises the exception
illegal datagram_size.

4.6.1. Interface

function alloc_dg (
size : in DGG.buffer_range
) return DGG.datagram pointer;

4.6.2. PDL

if size > large queue.size and size > kernel_gqueue.size then
raise illegal datagram size

end if;

~- The reason for using a comb structure for the conditional

~- statements (instead of nested elsifs) is that although the

~-- application may request a small datagram buffer, there may

-- not be a buffer available - thus we must check to see if a

-- datagram has been allocated after each step, and try again

~- with a different buffer pool if not.

if size <= small queue.size then
dg := dequeue from small queue
dg.do_optimization := false;

end if;

if dg = null and size <= large_gqueue.size then
dg := dequeue from large queue
dg.do_optimization := false;

end if;

if dg = null and size <= kernel queue.size then
dg := dequeue from kernel queue

I eand if;
raturn dg:;

4.7. free_dg

The £ree_dg subroutine is used by the Kernel communication subroutines when they have
finished with a datagram. This subroutine finds the appropriate free queue in which to place
the datagram. Free_dg must be called when a datagram is no longer needed,; it not, the
pool of available datagrams will eventually be exhausted, and subsequent calls to
alloc_dg will be unable to allocate a datagram.

The £rzee dg subroutine enqueues the specified datagram into the appropriate free queue.
Since all datagrams that the application can allocate should have been obtained via
alloc_dg, the first three state nents in the case statement should always be executed.
However, in case the application attempts to release an illegal datagram type (i.e., one of
type queue _head), this subroutine raises the exception illegal datagram class.

CMU/SEI-89-TR-19 169

4.7.1. Interface

procedure free dg (
dg : in DGG.datagram pointer
):

4.7.2. PDL
case dg.class
when small => enqueue (dg, small queue)
when large => enqueue (dg, large gqueus)
when kernel => enqueue (dg, kernel queua)
when queue_head => raise illegal_ datagram class
end casa
170 CMU/SEI-89-TR-19

—

5. Packet Communication

All datagrams are broken up into 16-bit chunks (transmitted within 32-bit packets) for
transmission around the network. Because of the asynchronous nature of the
communication mechanism, there is no guarantee that a datagram arrives in its entirety
before another datagram is transmitted from another node. While the transmission of an
individua! packet is an atomic operaiion, transmission of a datagram is not. This means that
a given node may receive interleaved packets from multiple nodes. To ensure that all
packets arrive at their correct destination (and that datagrams are correctly reconstructed at
the destination node), each packet also contains the sender and receiver address.

A packet looks like the following illustration:

0 15 16 23 24 31

To From
Address Address

Data

Figure 28: Packet Layout

From-addresses and to-addresses may fall in the range of 1640C# through 16#FE#. The
value 164FF# is reserved for internal use during initialization only, and may not be used as
a valid network address (see Section 1.2 for details on how to configure the hardware
network address on the Kproc and Nproc). The from- and to-addresses in the packets
correspond to the physical_address field in the NCT, which is of type
NG.bus_address.

CMU/SEI-89-TR-19 m

6. Kproc/Nproc Interface

The interface between the Kproc and Nproc is asymmetrical. The Kproc is advised of
changes in the input queue by interrupts from the Nproc, while the Nproc polls the output
queue for changes in status. All data transfer is through the memory shared between the
Kproc and Nproc, and this in turn is effected by the subroutines enqueue, dequeue, etc.

6.1. Shared Memory

The shared memory on a processor node resides at the addresses described in Section 3
and Section 10, Table 40. The first 256 bytes of this shared memory are reserved for
shared variables, while the remaining bytes are used for the Ada heap for the Nproc. In this
latter area, the Nproc allocates the datagram buffers and places them in the various free
queues.®

There are two shared variables used by the Kproc/Nproc interface. These are
DGM. input_gueue and DGM. output _gueue, and they reside at the addresses defined by
MEM. input_gueue_address and MEM.output_ queue_ address, respectively.

Other shared memory variables are used internally by package D3M, but these are not used
by the Kproc/Nproc interface. The specific addresses and their uses can also be found in
the package memory addresses.

6.2. Enqueueing Messages for Transmission

When the Kproc wishes to transmit a message to another processor, it enqueues the
datagram containing the message into the output_gueue. The Nproc main loop code
(Section 7.2) continually polls this queue. As soon as a datagram is present in the queue,
the Nproc commences transmitting it over the network. The datagram must be correctly
constructed (i.e.,, the sender and receiver fields must be initialized, as must the
message length and operation fields — see Section 2.4 for details on each of these
fieids). The subroutines BIC.send_kernel datagram and
BIT_ send_process_datagramare typically used to construct these datagrams.

p— pa——

®The Ada heap for the Nproc is moved to the region of shared memory by a set of special linker directives.
This causes the Ada runtime to allocate memory from shared memaory instead of the normal location.

172 CMU/SEI-89-TR-19

6.3. Receiving Incoming Messages

When the Nproc receives a compiete datagram that is addressed to the current node, it
enqueues the datagram into the input_gueue, and generates an interprocessor interrupt
via ZPI.generate_kn_ interrupt. The Kproc must have an interrupt handler to service
this interrupt. When the Kproc responds to the interrupt, all it does is dequeue the
datagram from the input_queue and act according to the message contained in it. The
Kproc loops and dequeues as many datagrams as are available, since it may be the case
that multiple datagrams have been enqueued before the Kproc has a chance to respond to
the interrupt. The degueue subroutine returns null if no datagrams are available in the
input_queue (Section 4.3); this can be used as a test to see it the specified queue is

empty.’

"The subroutine BIC.initialize is used in the Kproc to bind the mnterrupt handler contained in
BIZ.reccive receive datagram_interrupt_handler (this subroutine is not exported in the spec),
which will in turn call the appropriate receive subroutines.

CMU/SEI-89-TR-19 173

7. Nproc Communication Routines

The Nproc operates as a purely interrupt-driven communication medium, with the
non-interrupt cycles being used to poll the output buffer for completed datagrams (and
thence to send them out onto the network). The Nproc communication subroutines are
broken up into four major parts:

1. Initialization. This part of the Nproc code is used to set up the communication
ports, allocate the shared datagram buffers, etc.

2. Main loop. The main loop is the polling (i.e., non-interrupt driven) part of the
Nproc code. It is used to scan for datagrams that are to be transmitted onto
the network,

3. Receiver interrupt service. This subroutine services interrupts as packets
arrive at this node. Packets are then tagged as:

e Addressed to this node (in which case they are reassembled as
datagrams),

¢ Addressed to another node (in which case they are simply passed
through to the next node downstream), or

* "Rogue packets” (which, due to an unknown — and unchecked — error
condition, are incorrectly addressed and are discarded).

4. Transmitter interrupt service. This subroutine services interrupts whenever a
packet may be transmitted from this node. Packets are classified as either:

« "Originate” packets (which are from datagrams composed on the
current node), or

» "Thru" packets (which have been received by this node, but which are
addressed to another node in the network).

The transmitter interrupt service subroutine sends a mixture of originate and
thru packets so as to fairly distribute network traffic.

The individual subroutines are discussed in greater detail in the foliowing sections.

7.1. Initialization

The initialization subroutine is used both to set up the contents of the Nproc and to initialize
the parallel 1/O board (see Section 2 for details on the parallel 1/O hardware). The
subroutine is also responsible for binding and enabling the interrupt handlers (whose job it is
to communicate with the parallel port), and for getting the network into a known startup
state. It does this by transmitting a "magic cookie" packet and waiting for the "magic cookie"
to appear on its receive port. Since the ability to send a packet around the network is
essential (that is, since the closure ot the Nproc communications ring must be guaranteed
tfor any network communication to be possible), the Nproc will wait as long as necessary for
the "magic cookie” to be received.

174 CMU/SEI-89-TR-19

This method works both when the network is starting up (in which case each Nproc
transmits the "magic cookie" to the node downstream of it), and when a single node reboots
when the network is already running (in which case the newly started Nproc transmits the
"magic cookie,” and every other Nproc passes it through (since it is not addressed to it), until
the "magic cookie" finds its way completely around the ring to the sender).

The contents of the "magic cookie" packet is defined to be the 16#00FF_DEAD#. This
ccresponds to a sender address of 16#00# and a receiver address of 18#FF#, the latter
address being "illegal" and thus recognized as a special case by the Nproc software.

7.1.1. PDL

DGM.Nproc_initialize
PIO.initialize_recv
PIO.initjalize xmit
sand "magic cookie" on output port
loop
exit when input port = "magic cookiae"
aend loop

KIM.bind interrupt_handler (parallel input vector)
KIM.enable (parallel input vector)
KIM.bind interrupt_handler (parallel output vector)
KIM.enable (parallel ocutput vector)

PIO.enable_ recv_interrupt
IPI.enable_kn_ interrupt

7.2. Main Loop

The main loop code of the Nproc simply checks to see if any datagrams are present in the
output queue. If there are, and if no datagram is currently being processed, the Nproc
begins processing the datagram by calling the transmitter prime subroutine (see Section 7.6
for details on this subroutine). No other work is done by the Nproc except for processing
incoming datagrams in the interrupt service subroutines.

7.2.1. PDL

loop
if current output datagram = null then
current output datagram := dequeue from ocutput queue
if current output datagram /= null then
calculate checksum
calculata count of words to be transmitted
mark current output datagram as "active"
call transmitter prime
end if
end if
end loop

CMU/SEI-89-TR-19 175

7.3. Calculate Checksum Routine

In the present implementation, this subroutine is null, and returns a value of 0. In future
implementations, this subroutine can be replaced by a true checksum or cyclic redundancy
check (CRC) subroutine to verify the validity of the datagram contents. In the current
configuration, where all datagram packets are transmitted with a full handshake protocol, it
was not seen as necessary to implement this subroutine.

7.4. Receive Packet Interrupt Service Routine

The receive packet interrupt service subroutine is used to capture packets from the parallel
port and process them acccrding to their address. Packets fall into three categories:

1. Packets that are addressed to this processor node
2. Packets that are addressed from this processor node
3. Packets that do not fall into either above category

Packets of the first category are collected into datagrams according to their sender. Packets
of the second category are discarded, since a packet sent by a node which has not been
picked up by a receiver is addressed to an iliegal node address.® Packets of the third
category are addressed to a different node and are passed through this node (with the intent
of their eventually reaching their destination).

Since a datagram is transmitted in its entirety by a node, before the next datagram can be
started, it is guaranteed that each incoming datagram is contiguous relative to its sender.
Although datagrams from muitiple senders may arrive at this node in an interieaved iashion,
each datagram from a single sender is contiguous. That is to say, each datagram is
transmitted in its entirety by a node before another datagram is started. However, to allow
for equitable network traffic management, a node will intersperse “thru” packets and
“originate” packets. Because of this, once an initial packet is received from a sender, it is
assumed that all following packets from that same sender will be part of the same datagram
(up to the declared size of the datagram), although other packets may arrive from other
nodes in between. Thus, the first packet of a datagram contains the size of the datagram
that is to be received.

If the packet is addressed to the current node, we determine what the current status of the
sender is with respect to this node. It can be in one of three modes (with a number of
possible transitions):

1. idle — Currently, there is no partial datagram being received by this node that .

8This mechanism may change in future implementations of the Kernel. In the current implementation,
datagrams that make it around the network without being "claimed™ are in error and discarded. Future
implementations may make use of more complex error recovery schemes. This implementation, however, takes
the simpler approach.

176 CMU/SEI-89-TR-19

was sent by the specified remote node. In this case, we allocate a datagram
buffer to contain the incoming message (recall that the first packet from a
node contains the size of the datagram to follow, and that we can allocate a
datagram buffer based on the first packet received from a node).

If we are able to allocate the datagram buffer, the status is setto active, and
all subsequent packets for the datagram from that node are written into the
datagram buffer. If no datagram buffer of the appropriate size is available, the
mode is set to discard, and all subsequent packets that comprise that
datagram are discarded.

2. discard - All incoming packets from the specified node are discarded until

the current incoming datagram is complete. This mode will be used only
rarely, as it is expected that the datagram traffic will not be so high that the
Nproc will run out of buffers. Note that this mode reflects a lack of datagrams
and is not the same as the process message queue overflow state in the
Kernel Facilities Definition, Section 10.1.22.
When the current incoming datagram is compiete (the size of the datagram
was transmitted as the first packet of the datagram), the mode will be set to
idle, so that subsequent incoming packets from that node will again signal
the start of a datagram.

3. active — All incoming packets from the specified node are placed into the

incoming datagram buffer associated with that node (recall that datagrams are
transmitted contiguously with respect to a singie node).
When the current incoming datagram is complete (the size of the datagram
was transmitted as the first packet of the datagram), the mode will be set to
idle, so that subsequent incoming packets from that node will again signal
the start of a datagram. Additionally, the Nproc interrupts the Kproc, advising
it that an incoming datagram has been received.

if a packet is destined for a different processor, it is simply loaded into a "thru buffer” for
transmission to the next node in the ring (the thru buffer is emptied by the transmit interrupt
service subroutine, Section 7.5). If the thru buffer becomes full as a resuit of enqueueing a
packet, receive interrupts are disabled to prevent buffer overrun. It is anticipated that this
condition will never happen, since the Nproc does nothing other than process datagrams
and packets (and thus would never be loaded enough for the thru buffer to fill). if, however,
the node is so overloaded that the thru buffer fills up, we allow a temporary shut down (the
receiver interrupts are subsequently reenabled in the transmit interrupt subroutine). If the
thru buffer was empty before the packet was enqueued, this means that the thru buffer now
has something in it, and the transmitter needs to be primed. f tris is the case, the
transmitter prime subroutine is called to start transmitting the contents of the thru buffer (see
Section 7.6 for details on the prime subroutine).

7.4.1. PDL

CMU/SEI-89-TR-19 177

while PIO.recv_buffer_ full loop
PIO.acknowledge racv_interrupt
if incoming packet addressed to this node then
case incoming status|[from address] is
when idle => -- No datagram active
calculate size of incoming message
allocate incoming datagram buffer
if no buffers available then
set status := discard
else
set status := active
save incoming packet into buffer
end if
whaen discard => -- Throw out mode
throw out packet
when active => -- Save mode
save incoming packet
if packet is end of datagram
calculate checksum
if checksum error then
discard incoming datagram
elsif datagram is sync message
act on sync meassage
else
aenqueue into Kproc receive gqueue
set status := idle
IPI.generate_kn_interrupt
end if
end if
end case
elsif incoming packet addressed from this node or
incoming packet addresses are illegal
throw packet out
else
put packet into thru buffer
case thru buffer_ status is
when is_full =>
PIO.disable_recv_interrupt
when was_ empty =>

xmit_ prime
when others =>
null
end case
end if
end loop

CMU/SEI-89-TR-19

7.5. Transmit Packet Interrupt Service Routine

The transmit interrupt service subroutine is used to transmit packets to other nodes.
Packets fall into two categories:

1. Packets originating on this node. These packets are dequeued from the
Kproc output queue by the main loop code (Section 7.2).

2. Packets originating on other nodes, passing through this node. These packets
are received by the receive packet interrupt handler (Section 7.4) and are
enqueued into the thru packet buffer.

The transmit interrupt handler sends both types of packets out onto the network in as fair a
distribution as poscible (to prevent one node from monopolizing the network). When both
types of packets are available to be sent by the Nproc, the transmit interrupt subroutine
sends one "originate” packet for every (NC.number of nodes+1)/2 "thru" packets. This
keeps any one node from overicading the network when other nodes need to transmit. If
only one kind of packet is available, no rationing is performed, and all packets of that type
are transmitted.

When thru packets are transmitted, one of three conditions can exist:

1. The thru buffer was previously full, and sending a packet created space in the
queue. In this case, receiver interrupts are re-enabled, allowing more
incoming packets to arrive (se2 Section 7.4).

2. The thru buffer is empty, having been exhausted by the last transmission. In
this case, if there are no originate packets to be sent, transmitter interrupts are
turned off, since nc packets remain to be sent. Packets may later become
available in the receive interrupt subroutine (Section 7.4) or from the main loop
code (Section 7.2), in which case transmit interrupts are re-enabled.

3. The thru buffer is neither full nor empty, in which case nothing is done with
either interrupt mechanism.

7.5.1. PDL

loop
if thru buffer not empty and thru count < maximum then

PIO.send_packet (thru packet)

if thru status = was_ full then
process inconing packet
PIO.enable_racv_interrupt

elsif thru status = is_empty and

current output datagram = null then

PIO.disable >mit_ interrupt

else
null

end if

taturn -- we sent something, so quit

CMU/SEI-89-TR-19 179

elsif current output datagram state = active then
PIO.send packet (originate packet)
if current output datagram finished then
DGM. free_dg(current output datagram)
current output datagram state := idle
if thru buffer empty them
PIO.disable xmit_ interrupt

return
end if
end if
reset thru count := 0
return -- we sent something, so quit
else

resaet thru count := 0
if thru buffer empty them
PIO.disable xmit_interrupt

return -~- nothing to send, so quit
else
null -- something to send, continue loop
end if
end if
end loop

7.6. Transmitter Prime

The transmitter prime subroutine is used to prime the transmitter. It is called when the main
loop starts sending a new outgoing datagram, or when the receiver interrupt subroutine
sends the first thru packet. Both subroutines use it to start the transmitter cycling, so that as
each packet is transmitted, an interrupt is generated to get the next packet.

The transmitter on the parallel I/O board issues a transmitter interrupt when it is able to
transmit to the parailel port (i.e., when the transmitter data port is empty). This is different
from the receiver side, which interrupts when it has received data on the parailel port (i.e.,
when the receiver data buffer is full). Priming the transmitter pump, therefore, is simply a
matter of enabling transmitter interrupts. The parallel I/O board issues an interrupt as soon
as it can transmit, which causes the transmitter interrupt subroutine to be called. This in turn
transmits the first available word from the output datagram.

The transmitter may already be enabled (if there are thru packets still to be transmitted), in
which case:

1. The transmitter may not interrupt immediately. This is not a concern, since it
will interrupt soon enough, and when it does, the transmitter interrupt
subroutine arbitrates between originate and thru packets,

2. The transmitter is already enabled. This also is of no concern, since enabling
an aiready enabled interrupt is legal.

180 CMU/SEI-89-TR-19

7.6.1. PDL

PIO.enable xmit_ intexrrupt

CMU/SEI-89-TR-19 181

8. Message Transfer Thread Examples

The following two sections outline the transfer of a message from one Kproc to another via
the DARK network. The first section describes the message transtfer in words, calling out
each Kernel routine that is used to move data from one location to another. The second
section views this transfer from a higher level, pictorially representing the data filow from the
application on one Kproc to another.

8.1. Detailed Thread Description

This section presents a simple scenario of one Kernel process transmitting a message to
another Kernel process residing on another processor. The receiving process is not
pending on a call to the Kernel primitive receive message at the time the message is
sent. For readability purposes, the sending Kproc actions are in regular type, the sending
Nproc actions are in bold type, those of the receiving Kproc are in italics, and those of
the receiving Nproc are in bold italics.

1. User process issues a CM. send_message Kernel call.

2. Local Kernel allocates datagram buffer of appropriate size from free list by
using DGM.alloc_dg. If none is available, control is returned to the
application {(datagram model does not require error reporting).

3. Local Kernel builds datagram header and copies application message into
datagram buffer using BI0.send_process_datagram

4. Local Kernel places datagram buffer into DGM.output_gueue with
DGM. enqueue.

5. Local Nproc detects buffer in queue when DGM.dequeue returns a valid
datagram (Nproc simply idle loops when there are no messages to
send).

6. Local Nproc trcnsmits datagram contents onto network using
established low-level protocol.

7. Local Nproc calls DGM. free_dg to deallocate the datagram buffer.

8. Remote Nproc detects "new datagram begins” packet. The first packet
of a datagram contains the length of the datagram to follow.

9. Remote Nproc calls DGM. alloc_dg to allocate a datagram buffer of the
appropriate size from free list. If none is avallable, all remaining bytes
from this incoming datagram are discarded.

10. Remote Nproc fllis datagram buffer packet by packet as received off the
network. Note that multiple incoming datagrams may be processed
simultaneously, although only one will be coming from any one
processor at a time.

11. When the Incoming datagram Is complete, the remote Nproc calls
DGM. enqueue 0 enqueue the datagram Into DGM. input _queue.

12. Remote Nproc calls IPI.generate_kn_interrupt to Interrupt the
associated remote Kproc.

182 CMU/SEI-89-TR-19

13. Remote Kproc B10. receive_datagram_interrupt handler is entered.

14. Interrupt service calls DGM.dequeue to remove the datagram from
DGM. input_queue.

15. Datagram contents are decoded, and a pointer to the datagram is enqueued
onto the receive process message queue. If the process receive message
queue is full, the error action selected by the queue_overwrite_rule i
performed.

16. Loop back to step 14 until no more datagram pointers are in Nproc input
queue.

17. At some later time, remote application issues CM.receive message Kernel
call.

18. Remote Kernel calls DGM.get first to get a pointer to first datagram in
process message queue and copies data into application buffer.

19. Remote Kernel calls DGM.delete to remove the datagram from the
application’s incoming message queue.

8.2. Graphic Representation of Thread

This section presents another simple scenario of one Kernel process transmitting a
message to a second Kernel process residing on a different Kproc. Except where
absolutely essential, the specific routines used within the Kernel are not called out. Refer to
Section 8.1 for these details.

In Figure 29, the sending process calls CM.send message to cause a message to be
transmitted to another process. To preserve the integrity of the data in the message, the
Kernel allocates a datagram in the shared memory pool and copies the application message
into it. The Kernel also maintains datagram bookkeeping information in the datagram
header, including the linked list pointers, application message length, sender, receiver, etc.

CMU/SEI-89-TR-19 183

KPROC

Application

SHARED MEMORY

NPROC

Datagram

Kemel

next
semaphore
message_length

VME bus

Figure 29: Send_Message — Application Message to Datagram

As can be seen in the figure above, the Kproc, Nproc, and shared memory are all
co-resident on the VME bus, and both the Kproc and Nproc can address the shared memory
with the same virtual addresses.

Once the application message has been copied into the datagram, and once the
bookkeeping intormation has been initialized, the datagram is enqueued into the output
queue so that the Nproc can transmit the datagram onto the network. As shown in Figure
30, the output message queue is maintained as a circular doubly linked list. Each datagram
header contains pointers to both the next and previous datagrams in the output queue (in
fact, all datagram lists — input Queues, output queues, and free lists — are maintained as
circular doubly linked lists).

184

CMU/SEI-89-TR-19

SHARED MEMORY

Datagram

Datagram

Datagram

Datagram -

Figure 30: Output Message Queue

When the Nproc detects the presence of a datagram in the output queue (and when no
other transmission action is being performed), it transmits the datagram to the network. The
Nproc does so by splitting the datagram into a series of 32-bit packets and transmitting them
in sequence. As shown in Figure 31, the datagram header is not transmitted to the network.
Instead, data are extracted from the datagram body in 16-bit chunks and bundled with the
16-bit sender and receiver address to form a 32-bit packet (see Figure 28 in Section 5§ for |

more details).

CMU/SEI-89-TR-19 185

Sender
Receiver
[))
[]
R H
DATAGRAM
fiext """ ! Sender
iprev ' Receiver
.Lscmaphorc H '
. :
...... T e o |
)
; .
E Data
; .
E Data
' PACKET
;] Sender
L b precccsnsca
: Receiver
1 h FeTeTenenes
: 1 Data

Flgure 31: Datagram to Packet Data Flow

As described in Section 7, packets can arrive at an Nproc at the same time that the Nproc is
transmitting packets. These arriving packets can either be addressed to the processor node
or they can be packets that are to be passed tirough this node to another processor node.
Figure 32 illustrates this multiple pathway communication scheme.

186 CMU/SEI-89-TR-19

Sending Node

SHARED MEMORY NPROC

Il

r a—
' w
! h i
! Lemed
]
!
--»: \ Packet
i
1
]
§
)
-
VME bus ;4 \
F 4
ré
PARALLEL PARALLEL
INPUT OUTPUT — '-L—-
PORT PORT

Figure 32: Packet Traffic onto Network

Packets arrive at the parallel input port and are processed by the Nproc (either for "thru”
transmission or to be stored by this processor node). While this is happening, the Nproc is
also extracting data from the datagram body, bundiing it into packets, and transmitting it
onto the network.

As mentioned previously, packets that arrive at a node are either addressed to that node or
are addressed to a different node. As seen in Figure 33, "thru" packets are simply
retransmitted on to the network. Those packets that are addressed to the current processor
node are bundled into a datagram in the shared memory pool. Section 7.4 describes this
procedure in detail.

CMU/SEI-89-TR-19 187

Receiving Node

SHARED MEMORY NPROC

VME bus 4

\
—rk Packst
ot PARALLEL PARALLEL
———1 INPUT OUTPUT
————————— PORT PORT

Figure 33: Packet Traffic off Network

Once a datagram has been completely received, the Nproc places it into the input queue of
the associated Kproc and generates an interprocessor interrupt (Section 7.4.1 details the
code needed to perform these actions).

The Kproc responds to the interrupt and moves the datagram from the general input buffer
to the specific application process buffer. The application can then issue a call to
CM.receive_message {0 copy the contents of the datagram into the application buffer.
Figure 34 jllustrates this latter process. The Kernel copies the body of the datagram into the
application buffer and discards the datagram. Some of the information in the datagram
header is passed back to the application (i.e., the sender, message tag, and message
length), while other information is simply used for Kemel bookkeeping e.g., the linked list
pointers, checksum).

188 CMU/SEI-89-TR-19

----H------

KPROC

Application

SHARED MEMORY

message_length
sender
receiver
message_tag

NPROC

\\‘\‘
0

Kcmc‘ \\\\\‘\‘\““‘\\‘\\:\\\x\\‘ \\\\\\\\\\\\\\\\\\““““\
Interrupt
VME bus
Figure 34: Receive_Message — Datagram to Application Message
CMU/SEI-89-TR-19 189

CMU/SEI-89-TR-19

190

V. General Utilities

CMU/SEI-88-TR-19 181

1. Low_level storage_manager

+ ———————————————————————————————————————
|
oo mmmm e ccmeccmm— oo +
| Allocat |
o +
i
* ———————————————————————————————————————

This package is used to allocate blocks ot bytes.

192

CMU/SEI-88-TR-19

1.1. Allocate

1.1.1. Interface
Allocate (number of bytes to raserve)

1.1.2. PDL

Allocate a byte array of the desired size
Return the address of the allocated area

CMU/SEI-89-TR-19

193

2. Storage Manager

et e DS B +
| |
oo + !
| Initialize | |
et + !
| |
e + |
| Allocate | |
e e E R LR + |
] |
e + I
| Deallocate | §
e e DS P L e + |
| 1
R e e +

This package manages all allocation and deallocation of dynamic storage. It does this by
encapsulating the equivalent Ada calls. This package exists only to provide the capability to
change to a different allocation mechanism should the standard Ada allocator prove to
cause problems.

194 CMU/SEI-89-TR-19

2.1. Allocate

2.1.1. Interface

Allocate return object pointer

2.1.2. PDL

return new object

2.2. Deallocate

2.2.1. Intertace
Deallocate (object pointer)

2.2.2. PDL

Free (cbject pointer)

2.3. Initialize

2.3.1. Interface

Initialize

2.3.2. PDL
Null

CMU/SE!-89-TR-19

195

3. Queue Manager

Create
Delete
Deleate
Dequeue
Empty
End_of_queue
Enqueue
Enqueue
Get_elament
Get_head
Got_gozt
Initialize iterator

Inititlizo:backwa:d_itornto:

Remove

- — - - -

- ——— -

This package builds and manages an ordered queue for the instantiated type.

This package is capable of being used in two modes: normal and tast. In normal mode, all

the operations search the queue for the desired element.
element is generated on insertion and used for quick retrieval and removal.

In fast mode, a pointer to the

196

CMU/SEI-89-TR-19

VI. Target-Specific Utilities

CMU/SEI-89-TR-19 197

1. Interrupt Names

L L D +
| |
mmmmmmmmmmmmmeomoecmoeooooes |
(Intexrrupt Vector Constants) |
------------------------------- l
| |
et L L e L B +

This package contains a set of named constants for use in setting up and handling
interrupts. These constants represent known vector numbers that uniquely identify an
interrupt.

The devices associated with the vectors and a discussion of interrupts in general can be
found in Part VIil.

198 CMU/SEI-89-TR-19

o

Sl i & O AN O G N aE =

1.1. Interrupt Vector Constants

There are several interrupt vector constants for each of the following devices:

1. Parallel /O (PIO)

2. 8-bit timer (Timer)

3. 24-bit timers (Timer)

4. Serial I/0 (SIO)

5. Real-time clock

6. interprocessor interrupter

The constant names have the following form:

<device mm>_<devico sectiom_vector

Where <device name> is one of the short names in the above paragraph, and <device
section> is a unique designation given to the different sections of a device. For example,
there are four 24-bit timers - A, B, C, and D; thus, A Timer's interrupt vector constant is
Timer_A_Vector.

CMU/SEI-89-TR-19 199

2. Low_level hardware

el +

| |
et + I
| My _network_address | |
R et + |

| |
e + I
| Is_kproc | |
T e L T E e e e + i

!]
e e D L e T + |
| Is nproc | |
$e e e +]

| |
ittt e e + |
| P | |
L L e DL L L L L L L + |

| |
D ettt + |
I v | |
e e + |

| |
D bt et + |
| Set_interrupt priority | |
e N e e L LT P + {

| |
B e bttt e + |
| Resat interrupt priority |]
A et e e + i

| |
............................... |
(base_interrupt_priority) |
_______________________________ |

| |

ettt +

2.1. My_network_address

2.1.1. Interface

my network_address return network address of caller

2.1.2. PDL

return value from hardware specific address for network address

200 CMU/SEI-88-TR-19

=l 0l B N &N D A BN B =

2.2. Is_kproc

2.2.1. Interface

is_kproc return boolean

2.2.2. PDL

return value from hardware specific address for Kproc/Nproc flag

2.3.Is_nproc

2.3.1. Interface

is_nproc return boolean

2.3.2. PDL
return value from hardware specific address for Kproc/Nproc flag

24.P

2.4.1. Interface
P

2.4.2. PDL

Use 68020 "CAS" ingtruction to claim a Dijkstra style semaphore.
Semaphore is shared between Kproc and Nproc.

25.V

2.5.1. Interface
v

2.5.2. PDL

Release a Dijkstra style semaphore. Semaphore is shared between
Kproc and Nproc.

CMU/SEI-89-TR-19 201

2.6. Set_interrupt_priority

Note, HIGH_INTERRUPT_PRIORITY (used below) has an actual value of 6, this shuts out
all interrupts except the real-time clock interrupt.

2.6.1. Interface

set_interrupt priority return old interrupt priority

2.6.2. PDL

Trap to Ada Runtime with request to set process’s priority to
EIGH_INTERRUPT_ PRIORITY

Return previous process priority

1

2.7. Reset_interrupt_priority

Note, in normal usage, the parameter to reset_interrupt_priority will be the result returned by
the corresponding call of set_interrupt_priority that opened the atomic region. Exceptionally,
when an atomic region is to be unconditionally closed, an unmatched call to
reset_interrupt_priority appears, taking as a paramater the value
BASE_INTERRUPT_PRIORITY exported by this package.

2.7.1. Intertace

reset_interrupt_priority (old interrupt priority)

2.7.2. PDL

Trap to Ada Runtime with request to set process’s priority to
the old interrupt priority
The previous process priority is discarded

202 CMU/SEI-89-TR-19

Il i B E R EE EE I = S

et it e T T +

| i
------------------------------- l
(Address Constants) |
............................... |

! |

D e e +

This package contains only named address constants. These constants are used specify
addresses of variables that must be placed at a particular memory location.

In particular, these constants define the location of the different message queues that reside
in shared memory. For further information on the queues and shared memory refer to Part
IV and Part VIil.

CMU/SEI-89-TR-19 203

3.1. Address Constants

The address constants found in this package are for the small, large, and Kernel datagram
queues, and input message queue and output message queue.

The constants names have the following form:

<queue nama> address

Where <queue name> is a string that identifies the queue name.

204 CMU/SEI-88-TR-19

Il N M S B B B B Em eE

‘- -

Hl EGE & B D B BN % B N D D SE T B O s

4. MVME133A Definitions

- - ——— - - —— - - - - ——

- ——————— —_————— - —— - -

I

|

!

1

|

|

(Type MFP_Registers) |
_______________________________ |
{ i
_______________________________ |
{ Type MSR_Register) |
_______________________________ |
! !
_______________________________ |
(Type MSR Bits) |
_______________________________ I
| |

D et e e Dt L +

This package contains named address constants and representation specifications for the
MVME133A Mono Board Computer. This board has several devices that are used during
the operation of DARK, such as MC68020 Microprocessor, and MC68901 Multi-Function
Peripheral (MFP). Refer to Part VIIi for additional information.

The MVME133A also has the 28530 Serial Communication Controller (SCC), but it is not
referenced or supported in this package. Refer to Chapter 6 for more information on this
device.

CMU/SEI89-TR-19 ‘ 205

4.1. Hardware Address Constants

The hardware address constants identify the locations of the MFP and Module Status
Register.

4.2. Type MFP_Registers

Ada representation specification clauses are used to define the type and layout of the MFP
register set.

There is an access type and constant declared for referencing the MFP. The access
constant points to the MFP register set and allows for easy device access through the Ada
language.

4.3. Type MSR_Register and MSR_Bits

The MSR is defined with an Ada representation specification clause. It defines the layout
and type of each field in the register. Two representations are provided for use in different
type access to the register.

An access type of the MSR_Register record type 1s declared for accessing the structure.

206 CMU/SEI-89-TR-19

e N S B) TN A B R am

R N N E D =

5. MZ8305 Definitions

[]
L)
o
'o
-]
(34
H
o
[

|
{ Type Timer Control)
|
et Tt +

This package contains named address constants and representation specifications for the
MC68230 PI/T device on the Mizar MZ8305 Parallel Interface and Timer hardware board.
Refer to Part VIII.

CMU/SEI-89-TR-18 207

5.1. Hardware Address Constants

The hardware address constants identify the locations of the base of the two Parallel /O
and Timer device register banks.

5.2. Type PIO_Control And Timer_Conrol

Ada representation specification clauses are use to define the type and layout of each
register in the device register bank. The layout of the individual registers map directly to
those defined in the user's manual for the PI/T device.

The register bank includes registers for the parallel I/O and timer; however, they are
declared in two separate representation specifications, since the two sections are
functionally different and are always reference separately.

In addition, there are access types and constants declared for the paraliel I/O and timer
register sets. The access constants point to each of the register sets for easy device
reference.

208 CMU/SEI-89-TR-19

G A AR B R ol G B B D GE EE BN B e

6. SCC_porta

| allocate |
| deallocate |
| disable_rx interrupts |
| di-ablo_tx_into:ruptn |
| Qnablo_zx_intotruptl |
| cnnblo_tx_intorrupto |
| get |
| get_byte |
| initialize |
| put_byte |
| send |
! |

- - - " - - -
- ———— - - - -~ - ———

The Serial Communications Controller (SCC) hardware is a general purpose /O device. A
description of the hardware can be tound in Chapter VIIl. This package is used to support
the synchronize primitive discussed in Chapter 13 and, as such, is not a general purpose
serial i/o package.

SCC Port A is used to provide an independent time synchronization mechanism using
standard, commonly available hardware. Each Kproc is connected via SCC Port A to form
the sync bus, dedicated exclusively to implementing the synchronize primitive on a
non-interfering basis. The software is constructed such that only one node, call the bus
master, is allowed to transmit at any given instant. Normally, the sync bus is in an idle state
where no one is transmitting or receiving. Mastership of the bus is achieved by successfully
allocating the device. When some process has successfully allocated the sync bus (i.e., has
oecome bus master) all other nodes on the bus are automatically transitioned into slave
mode, waiting for the time_is_now message from the bus master. The detailed layout of the
sync messages are contained in Appendix B, Table 2.

Some additional points to note about the sync bus software:

e The data are sent via the transmitter interrupt service routine (tx_isr). Sending
data via the serial port functions as follows:

1. The transmitter is primed with the first byte of data and transmitter
interrupts are enabled.

2. When a byte has been transmitted, a transmitter interrupt is generated
on the sender.

CMU/SEI-89-TR-19 209

3. The tx_isr sends the next byte in the message.

4. When the last byte in the message is sent, the tx_isr disables the
transmitter interrupts.

The data is received via the receiver interrupt service routine (rx_isr). The rx_isr operates
similarly to the tx_isr:
1. An interrupt is generated after a byte of data is stored in the receive data
buffer.
2. The rx_isr stores the data in an incoming message buffer.

3. When the last byte of the message arrives, the rx_isr resets the epoch time.
Note that, the actual event interrupt that processes the expired events won't
occur until all of the rx_isr processing is complete, because it has a higher
(and must always have) interrupt priority than the event timer.

Figure 35 illustrates the functioning of the sync bus described above.

210 CMU/SEI-89-TR-19

N T B i Er a0 G B B B G A =T B e

< 4

ime

6
anagement | Clock

— Sync Bus
Clock
7 T
/4 18
/ |
SCC Porta SCC Porta SCC Porta
{rx isr) (rx isr) (rx isr)

1. Application calls synchronize.

2. Synchronize attempts to allocate the sync bus (thus acquiring bus
mastership).

3. If no other node is currently using the sync bus, a prepare_to_sync message
is transmitted.

4. The prepare_to_sync message is received by all other nodes, transitioning
them into slave mode.

5. The current time of day is obtained,
6. Send first byte of time_is_now message.

7. The tx isr receives an interrupt after each byte of the message is sent. |t
completes sending the time_is_now message asynchronously.

8. All slave nodes receive bytes 1 through 7 of the time_is_now message.
9. Last byte (byte 8) of time_is_now message received.

10. Adjust_epoch_time is invoked to update the clock.

11. The local processor clock is reset to reflect the new time.

Flgure 35: Sync Processing

CMU/SEI-89-TR-19

211

6.1. Allocate

6.1.1. Interface

Allocate return boolean

6.1.2. PDL

Case sync mode is
When master =>
Disallow the process to allocate the bus, since some other process
(on this node) has a synchronization in progress
When slave =>
Disallow the process to allocate the bus, since some other process
(on another node) has a synchronization in progress
When idle => only in this state is the bus (presumably) available
Disable both rx & tx interzupts
Assert bus mastership
Send out the prepare_to_sync message
Wait for the data to be sent to all the nodes
Read back the sync character
If errors were detected in the prepare_to_sync message then a
colligion occurred and this node must back off and wait
Transition back to slave mode and allow data to arxrive
Wait for a specified time before reattempting to acquire
mastership (this node will either win mastership or
receive a sync byte from the winning node during this time)
Else
Transition to master mode
Inform the caller of successful allocation
End if
End case

6.2. Deallocate

6.2.1. Interface
deallocate

6.2.2. PDL

Case sync mode is
When idle or slave =>
null
When master =>
Set sync mode to idle
Raset sync bus to slave mode
Enable_xrx_interrupts
End case

212 CMU/SEI-89-TR-19

-.- - ”

S

/]
)

6.3. Disable_rx_interrupts

Since the enable/disable bits for both the Rx and Tx interrupts are stored in the same byte,
software flags are maintained that indicate the current state of each interrupt.

6.3.1. Interface

disable_rx_interrupts

6.3.2. PDL

Cage tx _enabled is
When true =>
Disable rx interrupt and enable tx interrupt
When false =>
Disable rx interrupt and disable tx interrupt
End case
Set rx_enabled to false

6.4. Disable_tx_interrupts

Since the enable/disable bits for both the Rx and Tx interrupts are stored in the same byte,
software flags are maintained that indicate the current state of each interrupt.

6.4.1. Interface
disable_tx_interrupts

6.4.2. PDL

Case rx_enabled is
When true =>
Enable rx interrupt and disable tx interrupt
When false =>
Disable rx interrupt and digable tx interrupt
End case
Set tx_enabled to false

6.5. Enable_rx_interrupts

Since the enable/disable bits for both the Rx and Tx interrupts are stored in the same byte,
software flags are maintained that indicate the current state of each interrupt.

CMU/SEI-89-TR-19 213

6.5.1. Interface

enable_rx_interrupts

6.5.2. PDL

Case tx_enabled is
When true =>
Enable rx interrupt and enable tx interrupt
When false =>
Enable rx interrupt and digable tx interrupt
End case
Set rx_enabled to true

6.6. Enable_tx_interrupts

Since the enable/disable bits for both the Rx and Tx interrupts are stored in the same byte,
software flags are maintained that indicate the current state of each interrupt.

6.6.1. Interface

enable_tx_interrupts

6.6.2. PDL

Case rx_enabled is
When true =>
enable rx interrupt and enable tx interzupt
When false =>
Disable rx interrupt and enable tx intarrupt
End case
Set tx_enabled to true

6.7. Get

6.7.1. Interface

Get (register to read)
return byte read from register

6.7.2. PDL

Select register to read
Return data in register

214 CMU/SEI-89-TR-19

2
t

-y ow il

6.8. Get_byte

6.8.1. Interface

get_byte (data byte,
data valid)

6.8.2. PDL

If data is available
Read the data
Set the data valid to true
Reseat any pending tx interrupts
Regset any pending rx interrupts
Else
Set the data valid to false
End if

6.9. Initialize

6.9.1. Interface

Initialize

6.9.2. PDL

Bind the receiver interrupt handlex

Enable the receiver interrupt

Bind the transmitter interrupt handler

Enable the transmitter interrupt

Clear the rx data register (it is quad buffered)
Set all the command registers

Allow (in hardware) rx interrupts to occur
Disallow (in hardware) tx interrupts to occur

6.10. Put_byte

6.10.1. Interface
put_byte (data byte)

6.10.2. PDL

Wait for a space in the tx data buffer to become available
Place the data in the tx data buffer

CMU/SEI-89-TR-19

215

6.11. Send

6.11.1. Interface
send (buffer address, data count)

6.11.2. PDL

Case on sync mode is
When master =>

Disable rx interrupts (since tx_isr will read the loop back bytes)

Copy the massage into local storage
Enable Tx interrupts

Prime the tx buffer with the first byte of the message

When slave =>

Reject the operation
When idle =>

Reject the operation
End case

6.12. Set

6.12.1. Iinterface

set (registar
data)

6.12.2. PDL

Setup register to write
Write data to register

6.13. Rx_isr

6.13.1. Interface
N/A

6.13.2. PDL

If receive data errors are detected =>
return, i.e., ignore the interrupt (the sender will
retransmit the bad data)
End if
Acknowledge the interrupt
Case on sync_mode
when idle => node can safely transition to slave mode
(no prepare_to_sync message has arrived)

216

CMU/SEI-89-TR-19

I A G A U Ay A Wy as

i U Gy BN G A aE Ty TE e B

read the sync protocol byte
transition to slave mode (i.e., listen-only mode)
rasat the received message counter
when slave =>
get the next byte of message
if this is the last byte ¢of the massage then
reset the epoch time
transition back intoc idle mode
end if;
when master =>
get the offending byte tc clear the rx pending conditions
end casa;

6.14. Tx_isr

6.14.1. Interface
N/A

6.14.2. PDL

If errors were detected during transmission then
Resend the bad character
Else
Read back the last character sent (thus resetting any
pending conditions)
if the current byte count < the length of the message then
Send the next byte of the message
Else, the message is completely sent...
Raset the output buffer parameters
Wait for all the characters to be transmitted
Read back the last character
Disable and reset Tx interrupts
Release bus mastership

CMU/SEI-89-TR-19 217

7. Timer_controller

acknowledge timer interrupt i
cancel_timer |
disable_timer]
enable_timer |
get_current count |
initialize |
initialize_timer |
set_timer |

e e B P PR PP P +
| |
_______________________________ i
(Timer_ name) |
............................... |
I !
............................... !
(Timer_A) |
(Timer_ B) |
(Timer_C) |
(Timar D) |
_______________________________ l
| |
_______________________________ |
(timer_count) |
_______________________________ |
| {
_______________________________ |
(one_second_count) |
_______________________________ |
| |
_______________________________ |
(timer mode) |
_______________________________ '
l |

$mmm e e e m e e ———— + |
{

|

|

|

|

!

|

|

|

i

A description of the actual timer hardware is found in Part VIii. From a software
perspective, the timers are simple devices that are loaded with a value and toid to start.
When the timers have decremented the initial value to zero, an interrupt is generated. The
timers operation in two modes:

1. Single_shot: where the initial value is decremented to zero and then the timer
is reloaded with the timer's maximum value and counting continues. This
maximum count allows the user enough time to stop the timer before another
interrupt is generated.

2. Automatic: where the initial value is decremented to zero and then the timer is
reloaded with the initial value. This allows the user to generate an interrupt at
a predictable rate.

The Kernel uses the single_shot mode for managing the time event queue (discussed in
Chapter 13) and the automatic mode for the real time clock (discussed in Chapter 2).

218 CMU/SEI-89-TR-19

7.1. acknowledge_timer_interrupt

7.1.1. Interface

acknowledge timer interrupt (name of timer)

7.1.2. PDL

Reset timer interrupt
Reenable timer interrupt

7.2. cancel_timer

7.2.1. Interface

cancel_timer (name of timer)

7.2.2. PDL

Disable the timar

7.3. Disable_timer

7.3.1. Interface

disable_timer (name of timaer)

7.3.2. PDL

Digable timer interrupt
Stop timer from counting

7.4. Enable_timer

7.4.1. Interface

enable timer (name of timer,
timer mode)

7.4.2. PDL

Set timer to begin counting down in given mode
Enable timer to interrupt

CMU/SEI-89-TR-19

219

7.5. Get_current_count

Reading the current count does not stop the timer from counting or interfere with its
processing.

7.5.1. Interface

get_current count (name of timer) return timer count

7.5.2. PDL

Read current value of timer count (1)

Read current value of timar count (2)

Adjust result to allow for overflow/wrap around between
read (1) and read(2)

Return adjust result

7.6. initialize

7.6.1. interface

initialize (timer vector
address of timer interrupt handler)

7.6.2. PDL

Bind the interrupt handler
Enable the interrupt handler

7.7. initialize_timer

7.7.1. Interface

initialize_ timer (name of timer,
timer count,
timer vector)

7.7.2. PDL

Set timer to interrupt at timer vector
Set timer to count down from timer count

220 CMU/SEI-89-TR-19

\
,

H

7.8. set_timer

7.8.1. Interface

set_timer (timer name,
timer vector
time of interrupt)

7.8.2. PDL

If the timer value > the maximum countdown time then
Set the timer for its maximum countdown time
Else

Convert the countdown time to timer ticks (each tick is 2 microsec)

End if
Enable the timer

CMU/SEI-89-TR-19

221

ol S U Iy D TN GE My A B G UGE ay tE wE A B = =

CMU/SEI-88-TR-19

Vil. Debug Utilities

CMU/SEI-89-TR-19

223

1. CSA_debug
| |
e e D D bt DLl b bt it + |
| print_csa i I
e + |
| 1

This utility prints the contents of the context save area associated with a particular process.
it is 68020-specific.

224 CMU/SE!-89-TR-19

1.1. print_csa

1.1.1. Interface

print_csa (context save area contents)

1.1.2. Sample Output

PTB:
PTB:
PTB:
PTB:
PTB:
PTB:

PTB:

PTB:

00000000 0CO0DO0OO0O0OO0O0O0OO0O

stack low_address
stack_high address
context_saved
program countar
status_register
data registers

[d0] =>

[d1] =>

[d2] =>

[d3] =>

[d4] =>

[d5] =>

[d6] =>

[d7] =>
address registers

[aC] =>

[al] =>

[a2] =>

[a3] =>

[ad] =>

[a5] =

[a6] =>

[a7]) =>

=>
=>
=>

OO0 O0OO0OO0O0O0CO0O

0OO0OO0O0OO0COO0O0O

floating point_coprocessor =>

0000000000000 0O0O0OO0OOO

0000000000 CO0OO0OO0OO00O0O

000000000 O0OOO0OOOOO0OOO

CMU/SEI-89-TR-19

2. Debug
T e et et +
| |
e e ST P LR R + |
| set_debug_level | |
LT RS R PR e + |
| |
T + |
| debug level { \
T e + |
i |
——————————————————————————————— I
{ unit_idontifior) }
............................... I
| |
D +

This package contains an enumerated type of the short names of all the Kernel packages.
Associated with each package is a debug level. Taken together, they are used to control
debug out in the corresponding package. Currently, all debug output is controlied at the
package level, but any unit name can be added to this package and used for a finer level of
control.

Any new packages added to the system should be added to this list. In reality, any unit
name can be added to the package and used to control debug output.

The debug levels are simple integers used to control the debugging output embedded in the
Kemel packages. The exact meaning of any particular value depends on the package, but
in general, there are two points:

1. The larger the number the larger the amount of debug data generated.

2. A value of zero turns off all debug output by a package.
For example, suppose that one wanted to turn on the debugging in the package
processor_management (short name: rm). This would look like:

set_debug level (rm, 100):

Subsequently, in the body of processor_management one would find the debug output like:

If debug level (rm) >= 99 then
text_io.put_line ("some truly important data..."):
End if;

226 CMU/SEI-89-TR-19

2.1. Set_debug_level

2.1.1. Interface

set_debug_level (unit short name,
debug level)

2.1.2. PDL
Set the current debug lavel for the unit to the specified value

2.2. debug_level

2.2.1. Interface

debug_level (unit short name) return integer

2.2.2. PDL

Return the current deubg level for the name unit

CMU/SEI-89-TR-19

227

3. dgg_debug
o mm e e e mmmm e m— oo +
| 1
$mmmmmmm e m oo + I
| Print_datagram | |
e R R + |
| |
S S + |
| Print_queue i]
T e T + I
| 1
B T +

This package prints the contents of a single datagram or an entire queue of datagrams.
Datagrams can be dumped in two ways:

1. Header information only
2. Header information and message text (as a block of byte data)

228 CMU/SEI-89-TR-19

3.1. Print_datagram

3.1.1. Interface

print_datagram (pointer to datagram to print
print whole datagram £flag)

3.1.2. PDL

print contants of datagram header
if dump whole_datagram then

print contents of entire datagram buffer
else

print first 6 bytes of datagram buffer
end if

3.1.3. Sample output

Datagram located at 16#10F528#%

next => 16#1006F0# ©prev => 16#1006F0#

class => SMALL

buffer_ size => 64

msg_count => 0

semaphore => 0

megsage_length => 4

operation => BLIND_ SEND

remote_timeout => microsec (high 32 bits) =>
microsec (low 32 bits) =>

sender => 0 / -32766

receiver => 1/ -32765
message_tag => 0
message_id => 0

checksum => 16#0#
buffer => 102 101 101

3.2. Print_queue

3.2.1. Interface

print_queue (pointer to datagram queue to print
print whole datagram flag)

3.2.2. PDL

For every datagram in queue loop
If dump whole_datagram then
Call print_datagram(dump whole_buffer => true)
Else
Print selected header information

CMU/SEI-89-TR-19

229

End if

End loop

3.2.3. Sample output
Datagram gqueue located at 16#1006FO0#

a= 2 datagrams in queue ==

Datagram located at 16#10F528#

next => 16#10F430# prev => 16#1006F0#
class => SMALL
sender => 0 / -32766

receiver => 1/ -32765
message_length => 4
operation => BLIND_SEND
message_tag => 0
megsage_id => 0

Datagram located at 16#10F430#

next => 16#1006FO0# prev => 16#10F5284#
class => SMALL
sender => 0 / -32766

receiver => 1/ -32765
massage_length => 7
operation => BLIND_ SEND
massage_tag => 2
message _id => 0

230

CMU/SEI-89-TR-19

4. Make NCT
| |
T + |
| Make_ NCT ! I
R e + |
| |

This is procedure prompts the caller to select one of the available network configurations. It
then fills in the NCT appropriately and returns the selected configuration to the caller. It is
setup to work with the DARK hardware described in Chapter VIII.

CMU/SEI-89-TR-19 231

4.1. Make_nct

4.1.1. Interface
make_nct (character indicating selected configuration)

4.1.2. Output

make nct: The available network configurations are...
make_nct: 0> stand alone node 0
make_nct: 1> stand alone node 1
make_nct: 2> stand alone node 2
make nct: 2> stand alone node 3
make nct: a> 2 nodes (0/1/x/x) 0 master
make nct: b> 2 nodes (2/3/x/x) 2 master
make nct: c> 4 nodes (0/1/2/3) 0O master
make_nct: Enter your network configuration:
232 CMU/SEI-89-TR-19

5. NCT_debug

P r e e — e — e ———— - - ——
!
e e e E L L +
| print_nct |
e e L +
|
B e +
| print_nct_entry |
e R et +
|
e r e, mr r e, e e e — - - ——————

This package prints all or part of the NCT.

CMU/SEI-89-TR-19

233

5.1. Print_nct

5.1.1. Interface

Print nct

5.1.2. PDL

For each entry in the NCT
Print_nct_entry (the next NCT entry index)
End loop

5.2. print_nct_entry

5.2.1. Interface

print_nct_entry (index of entry into NCT)

5.2.2. Sample Output
NCT: ***x* BEGIN DUMP OF NCT ENTRY ***%x

NCT: 1logical name => Kproc_a
NCT: physical address => 0
NCT: kernel_device => TRUE
NCT: needed to_run => TRUE
NCT: allocated process id => NULL
NCT: initialization_order => 0
NCT: initialization _complete => FALSE
NCT: *%*x%** END DUMP OF NCT ENTRY *¥**¥x%
234 CMU/SEI-89-TR-19

e et +
] |
e e L LR L L + |
| Print process_table | |
et e e L L e + |
| i
T e L E P L L L Pt + |
| Print_process_table entry part| |
e e b EL DL L L + I
| |
e e D e LT B L + {
| Print_process table entry | |
et il + I
|]
——————————————————————————————— I
(process_table_entry part))
_______________________________ '
| |
T e +

Local procedures are defined to print each sub-record of a process table entry:

e process_attributes

e schedule_attributes

e communication_attributes
e pending_activity_attributes
e send_w_ack_attributes

e semaphore_attributes

e tool_interface_attributes

Each of these internal procedures ‘akes a process identifier as an input parameter and

dumps the appropriate section of the process table.

CMU/SEI-88-TR-19

- 235

6.1. print_process_table

This procedure prints the entire process table entry for each process.

6.1.1. Interface

print_process_table

6.1.2. PDL

For each entry in the process table loop
print_process_table_entry (process identifier)
end loop

6.2. print_process_table

This procedure prints only a selected part of the process table entry for each process.

6.2.1. Interface
print_process_table (process table entry part)

6.2.2. PDL

For each entry in the process table loop
print_process_table entry (process identifier,
process table entry part)
end loop

6.3. print_process_table_entry_part

6.3.1. Interface

print_process_table entry part (process identifier,
process table entry part)

6.3.2. PDL

Using the appropriate local procedure, print that part of
the process table for the selected process.

6.3.3. Sample Output
See print_process_table_entry below.

236 CMU/SEI-89-TR-19

6.4. print_process_table_entry

6.4.1. Interface

print_ process_table_entry (process identifier)

6.4.2. Sample Output

PTB: *%** BEGIN DUMP OF PROCESS TABLE ENTRY ***%%
PTB: $$$ BEGIN PROCESS ATTRIBUTES $$$

PTB:
PTB:
PTB:
PTB:
PTB:
PTB:
PTB:
PTB:
PTB:
PTB:
PTB:
PTB:
PTB:

PTB:

PTB:

000000000 O0O

logical_ name
kind of process

process_init_status.declared =
process_init_ status.created
process_index.node_number

process_index.process_number

code_address
stack_low_address
stack_high address
context_saved
program counter
status register
data registers

{d0] =>

[d1] =>

[d2] =>

[43] =>

[dd] =>

[da5] =>

[d6] =>

[a7] =>
address registers

[(a0] =>

[al] =>

[a2] =>

[a3] =>

[ad] =>

[a5] =>

[a6] =>

[a7] =>

=>
=>

OO0 O0OO0OO0CO0OO0O0

CO0OO0O0O0OO00O

=>

YYVYVY

VIA_CALL

floating_ point_coprocessor =>

[~ NeoNeolNololaelNoloNeNo]

QOO0 O0O0O0OO0OO0CO0OO0

foo_1

KERNEL PROCESS

FALSE

FALSE
0

0

-1

-1

-1

0

0
0
0
0
0
0
0
0
0
0
0

CMU/SE!-89-TR-19

237

0OO0OO0O0OO0O0COO
0CO0OO0OO0OO0OO0OO0OO
0000000
0000000

PTB: $$$$ END PROCESS ATTRIBUTES $$$$
PTB: $$§ BEGIN SCHEDULE ATTRIBUTES $$$

PTB: state => RUNNING

PTB: priority => 1

PTB: preemption => DISABLED
PTB: block time.day => 0
PTB: block time.second => 0.00000
PTB: unblock time.day => 0
PTB: unblock tima.second => 0.00000

PTB: $$$$ END SCHEDULE ATTRIBUTES $$$$
PTB: $$$ BEGIN COMMUNICATION ATTRIBUTES $$$

PTB: next_available message ID => 0

PTB: maximum message queue_size => 0

PTBE: message_gqueue => -1

PTB: current send buffer => -1

PTB: queue_overwrite_rule => DROP_NEWEST_ MESSAGE
PTB: message_ gqueue_. overflow => FALSE

PTB: §$$$ END COMMUNICATION ATTRIBUTES $5$$
PTB: $$$ BEGIN PENDING ACTIVITY ATTRIBUTES $$$

PTB: pending activity => NOTHING_PENDING
PTB: pending event_ID => queue is empty
PTB: current pending message => -1
PTB: alarm svent_ID => gqueue is empty
PTB: alarm resumption_priority => 0

PTB: exception_name => NO_EXCEPTION
PTB: §$$$$ END PENDING ACTIVITY ATTRIBUTES $$5$
PTB: §$$ BEGIN S_.ID W ACK ATTRIBUTES $$$
PTB: event_ID => gueue is empty
PTB: message => -1
PTB: queue => -1

PTB: $$$ BEGIN SEMAPHORE ATTRIBUTES $$$
1! TBD for now !!!
PTB: $S$$8$ END SEMAPHORE ATTRIBUTES $$S$$
PTB: §$$8 BEGIN TOOL INTERFACE ATTRIBUTES $$$
') null for now !!!
PTB: §$$$8$ END TOOL INTERFACE ATTRIBUTES $$5§
PTB: **x*»% END DUMP OF PROCESS TABLE ENTRY ¥*¥**x+

CMU/SEI-89-TR-19

7. semaphore_debug

]
?
0
:
by
"v
5
o

7.1. semaphore_print

7.1.1. Interface

semaphore_print (semaphore to print)

7.1.2. PDL

Announce salf with message and print opening delimiter
Print address of semaphore head
Print number of queued processaes

For each queued process in the ordered enqueued loop
Print the logical name of the process
End loop

For each semaphore previocusly claimed by the owning process
in reverse claim order loop
Print address of semaphore head
End loop

Print closing delimiter
7.1.3. Sample Output
* Contents of Semaphore ££41£0
[number of waiting_ processes => 3

Enqueued process => process_1l
Enqueued process => process_2
Enqueued process => foo
Previously claimed sema => ddcOc?

Previously claimed sema => e£c010
Previously claimed sema => ££0143

CMU/SEI-89-TR-19 239

]

CMU/SEI-89-TR-19

240

VIll. 68020 Hardware Configuration

This chapter describes the DARK hardware testbed, in particular the MC68020 target
hardware and its configuration.

CMU/SEI-89-TR-19 241

1. Target Processor Board

The DARK testbed has four processor nodes distributed across a network. Each node
comprises two processors: the Nproc and the Kproc. This chapter describes these
processors in more detail. The Motorola MVME133A board is used to implement both the
Kproc and Nproc.

1.1. MVME133A Board

The MVME133A is a single VME board computer module with many features required by
embedded system applications. Refer to the MVME133A-20 VMEmodule 32-Bit Monoboard
Microcomputer User’s Manual for further details on this board.

This list summarizes the MVME 133A features:

* 20MHz MC88020 32-bit microprocessor.
» 20MHz MCE8881 Floating Point Coprocessor (FPC).
¢ 1 megabyte (MB) of shared dynamic RAM, 32-bit wide.

e 32-bit address and data bus VME master (A32/D32), and compatibility with
A32/D16, A24/032, and A24/D16. 4-gigabyte address space.

» Sockets for ROM, PROM, or EPROM chips, 256 kilobytes (KB) max.
» 1 user-programmable, 8-bit timer.

o Time-of-day clock, 100ms resolution.

* 1 asynchronous serial port, and two async/sync serial ports.

* VME bus controller functions, master or slave.

* VME bus interrupter.

» VME bus interrupt-handier logic.

1.1.1. Local Memory

There is a total of 1 MB of Dynamic Random Access Memory (DRAM) on the MVME133A
board. It is shared so either the MC68020 or the VME bus master can access on-board
memory, but not at the same time. This memory is used to store the object code, but can
also be accessed from the VME bus.

Each MC68020 access to on-board DRAM requires four clock cycles (200ns, three
minimum plus a wait state). However, during the Read-Modify-Write (RMW) sequence it
may take more.

Local memory can have a different range of addresses when accessed locally or from the
VME bus. Memory is always accessed locally with addresses between 16#00000# and
16#1FFFF#. However, this same 1 MB address space can be accessed relative to a
different base address that is set with jumpers.

242 ' CMU/SE!-89-TR-19

1.1.2. Floating Point Coprocessor

The Motorola MC68881 Floating Point Coprocessor (FPC) is a full implementation of the
IEEE standard for binary floating-point arithmetic. It provides a logical extension to the
MC68020 microprocessor and operates at the same frequency, 20MHz.

1.1.3. Real-Time Clock

The Real-Time Clock (RTC) on the MVME133A is an MM58274 chip. It provides a
time-keeping function from tenths of seconds to tens of years. It can generate interrupts to
the MC68020 at regular intervals with a 0.1-second resolution.

1.1.4. Serial Debug Port

The Debug port is provided by a Motorola MC68901 chip. The connector for this port is
located on the front panel of the MVME133A board. It is an RS-232-C compatible port,
configured for Data Communications Equipment (DCE) only. it is called the Debug port
because when the debug ROMs are used, it is programmed to be used for interactive
debugging. No other port may be configured for this purpose. The debug port may operate
at all the standard baud rates between 110 and 19,200.

1.1.5. Serial Ports A and B

The MVME133A uses the 28530 Serial Communications Controller (SCC) chip to implement
its two multi-protocol serial ports, which provide multi-function support for handling a large
variety of serial communications protocols. The Z8530 may be programmed to follow
standard formats such as byte-oriented synchronous, bit-oriented synchronous, and
asynchronous. Port A of the Z8530 is connected to on-board RS-485/422 drivers and
receivers. Port B of the Z8530 is connected to on-board RS-232C drivers and receivers.
The baud-rate clock for both channels may be obtained from several on-board sources.

Port A, with RS-485/422 drivers, is routed to the P2 connector. It may be configured by
software to be either master or slave and half or full duplex.

Port B, with RS-232C drivers, is also routed to the P2 connector. It may be configured
either as DTE or DCE, by setting jumpers.

1.1.6. Timers

The MVME133A has four on-board timers. Three of them are not available to the
programmer, because they are assigned to do other functions; debug port baud rate
generator, tick timer, and watchdog timer. All of the timers are part of the MC68301 chip,
which aiso provides a serial port (debug port), and general purpose |I/O pins used for status
and control. The only timer available to programmer is eight bits wide and can be used for
any purpose.

CMU/SEI-89-TR-19 243

1.1.7. Interrupts

The MVME133A board provides logic for interrupt handling and an interrupter. The interrupt
handler gives the on-board MC68020 the ability to sense and respond to all on-board and
off-board (VME bus) interrupts. The board may be jumpered to enable or disable any
combination of the seven interrupt request lines.

The interrupter can generate interrupts on interrupt request level 3.

1.1.8. ROM, PROM, EPROM, and EEPROM Sockets

The MVME133A has four IC sockets that are organized into two banks. These sockets
provide up to 256 KB of extra ROM. The sockets hold the debug ROMs or any other
user-programmed ROMs.

1.1.9. VME System Controller

The system controfier on the MVME133A implements a level 3 VME bus arbiter, VME bus
requester, and Interrupt ACKnowiedge (IACK) daisy-chain driver. The arbiter and IACK
daisy-chain functions are designed to meet the VME bus specification.

The VME bus requester is used to obtain and relinquish master control of the VME bus. It
can request VME bus master control on any one of the four request levels depending on
how it is jumpered. It requests master control of the VME bus any time the MVME133A is
not the current VME bus master and the MC68020 indicates it requires access to the VME
bus.

The control function arbitrates all VME bus requests so that only one requester of the bus
actually gets control. The local microprocessor has to compete evenly with all other devices
to get master control of the bus.

The IACK daisy-chain function is a mechanism to acknowledge interrupt request in some
orderly fashion. Due to the way the daisy-chain works, the physical position of VME boards
in the chassis is significant. '

1.1.10. P1 And P2 Connector

The MVME133A board attaches to the VME backplane at the connectors P1 and P2. P1
couples most of the required VME bus signals to and from the backplane. The P2
connector couples all of the optional VME bus signals and the signals for serial ports A and
B.

244 CMU/SEI-89-TR-19

1.2. Kernel Processor Board Configuration

This section lists all of the jumpers on the MVME133A board and indicates how they are set
for the board identified to be the Kernel processor. More detail on the function and location
of each jumper may be obtained from the MVME133A user's manual.

e J1 — System Controller Enable Jumper — set to disable the system controiler
function.

¢ J2 — Onboard RAM offset address select header — consists of four jumpers set
for an offset address of 16#200000#.

¢ J3, J4 - VME bus requester level select headers — consists of six and three
jumpers, respectively. These have been left in their factory settings to couple all
four bus grant lines through the board and establish a level 3 arbiter.

+ J5 - RMW cycle type select jumper — has been left in its factory setting; the
processor must obtain master control of the VME bus to execute
read-modify-write accesses.

¢ J6, J7 - ROM/PROM/EPROM size headers — consist of three jumpers each.
These have been left in their factory settings and have been configured for the
Debug 133A ROMS.

¢ J8 — Global timeout jumper - no jumper installed. This jumper is only important
for boards that have been set up as system controllers.

e J9 — Reset switch jumper — set to enable the reset momentary button on the
front panel.

¢ J10 — Abort switch jumper — set to enable the abort momentary button on the
front panel.

¢ J11 - VMEDbus interrupter jumper — set to enable the interrupter logic. Specific
instructions were given not to change this from the factory setting.

¢ J12 - VMEbus interrupt handler header — consists of seven jumpers. These
jumpers are set to permit the Kproc board to handle interrupt requests on
IRQ7,1RQ6,IRQ3,and IRQ1 lines.

¢ J13 - Serial port B configuration header — consists of 11 jumpers. These have
been left in their factory settings for port B to operate as a DCE device.

¢ J15 - Software readable header — consists of five jumpers. They are set
differently for each board. J15 can be read from software, and it is used to
indicate the physical number of the board.

¢ J16 — Seral ports RTXCx source select header — consists of two jumpers.
These have been left in their factory settings.

¢ J17 - VMEbus data width select jumper — may be placed in one of several
positions. It is set to indicate either a 16-bit or 32-bit, or both 16-bit and 32-bit
data path during VMZS /O accesses. It has been left in the factory setting to
allow both 16-bit ana 32-bit width data.

¢ J18 — VMEbus address size select Jumper — is similar to J17, except it is set to
choose the size of the address on the VME bus, either 32-bit or 24-bits wide. It
is set for 32-bit wide addresses.

e E1, E2 — Cache disable test points — may be wire-wrapped together to disable
the MC68020 cache. They are normally left untouched, but during performance
analysis, the cache is disabled to use the logic analyzer.

CMU/SEI-89-TR-19 245

1.3. Network Processor Board Configuration

This section covers the jumper settings for the Nproc board. Since most of the Nproc
jumpers are set the same as the Kproc jumpers, only the ones that differ are listed. More
detail may be obtained on the function of each jumper by referencing the MVME133A Users
Manual.

e J1 — System controller enable jumper — set to enable the system controller
function.

» J8 — Global timeout jumper — set to enable the global timer. This jumper is only
important for boards that have been set up as system controllers.

¢ J12 — VMEbus interrupt handler header — consists of seven jumpers. These
jumpers are set to permit the Kproc board to handle interrupt requests on IRQS,
IRQ4, IRQ2, and IRQ1 lines.

¢ J15 — Software readable header — consists of five jumpers set differently for
each board.

246 CMU/SEI-89-TR-19

2. Parallel Interface

The network in the DARK testbed consists of segments of 32 parallel lines connecting
adjacent Nproc. The parallel interface used to connect the Nproc to each segment of the
network is the Mizar MZ8305 Quad Parallel Port module. Two of these modules are
required per node.

2.1. MZ8305 Board

The MZ8305 is a single height VME bus compatible board. It connects to P1 of the VME
bus backplane (upper connector). At the heart of the MZ8305 board are two Motorola
68230 Parallel Interface/Timer (PI/T) chips, designated #1 and #2. The board has a total of
32 bits of buffered parallel I/O and two programmable timers. Refer to the MZ8305 Quad
Parallel Port Module User's Manual for more details on this board.

All on-board addresses are mapped to a 16-bit |/O address space. The base address can
be jumpered to any 256-byte boundary. All of the registers on the MZ8305 are contained in
the two PI/Ts. Each PI/T has 32 8-bit registers.

There are four interrupt sources on the MZ8305. Each can be jumpered to drive any one of
the VME bus 7 interrupt request levels. However, no two sources can drive one line.

2.2. Parallel Interface/Timer

Both 68230 PV/T chips have three 8-bit ports, designated ports A, B, and C; one (port C) is
used for controlling associated interrupts, buffering logic, and handshake lines; and two
(ports A and B) are used for paralle! I/0O. The parallel ports can be programmed for input,
output, or bi-directional I/O. There are two handshake lines per I/O port, designated H1, H2,
H3, and H4. The PV/T can be programmed to generate interrupts when data are received at
port A or B.

Each PI/T also has a 24-bit programmable timer, which may be programmed to generate
interrupts periodically, or after a specified period of time. The timer input clock may come
from an external source, through one of the parallel 1/O connectors, or from on-board
circuitry at one of the following frequencies: 500, 250, 125, or 67.5 KHz (2, 4, 8, 14.8 usec
periods, respectively).

2.2.1, Parallel 1/0 Connector

The MZ8305 board has two 50-pin connectors, designated J1 and J2. These connectors
provide access to the /O and handshake lines, the timer input clock, and timer output for
each PI/T.

CMU/SEI-89-TR-19 247

2.3. Input Port Parallel Board Configuration

This section covers the jumpers on the input paraliel port board. Many of the jumper
settings are the same on both the input port and output port boards. The function of each
jumper is explained in more detail in the hardware reference, MZ8305 Paralle! Interface
Board User's Manual. The following is a list of all the jumper blocks and their settings for
this board:

e KO8 — Address select — All jumpers are left installed so that the base addresses
for PI/T #1 and #2 are 16#FFFF0040# and 16#FFFFO000#, respectively.

e K09 - Interrupt request — The jumpers are wire wrapped so that P1 is
connected to IRQ4, P2 is connected to IRQS5, T1 is connected to IRQ7, and T2
is connected to IRQ6.

» KO5 - interrupt ACK for PIO — Jumpers are installed at AO2 and AQ1 for PIRQ1
and at AO2 for PIRQ2.

» K06 — Interrupt ACK for timers — A jumper is instalied only at AO1 for T, .».
e K04, K10 = T, 11/ Toure €Nable — Both these jumpers are installed.

® KO1 — Tou11/Toute @nd buffer control — Only four jumpers are installed. They
connect pin 3to 13,6 to 16, 7to 17, and 10 to 20.

® KO3 - T,4/T;p input enable — Both jumpers are removed.
» KO7 ~ Timer frequencies — One jumper is placed so that T,,, and T,,, connect,
and a second jumper is installed to connect T, ., to S00KHz.

e K02 ~ H2/H4 direction — All jumpers are instailled so that the handshake lines
operate in the out direction.

2.4. Output Port Parallel Board Configuration

Only one jumper is set differently on the output port parallel board from those on the Input
Port Parallel Board configuration:

o KO8 ~ Address select — One jumper has been removed from the factory setting
(A11) so that the base address for PI/T #1 is 16#FFFF0140# and for #2 is
16#FFFFO1004.

248 CMU/SEI-89-TR-19

3. Shared Memory

This section covers basic information on the shared memory boards. The testbed uses
Motorola MVME225-1 shared memory boards for the global memory on each processor
node. This board is a full height VME board with 1 MB of DRAM. Refer to the MVME225-1
1Mb Dynamic Memory Module User’s Manual for more details on this board.

The processor boards are designed so that the local processor always sees its local
memory at the same location (starting at 16#00000000#). However, from off-board, the
memory appears at a different location. Because of the different address mappings, the two
processors are never able to see the same memory location using the same address. This
would only be possible with a separate memory board such as the MVME225-1.

The base address of the shared memory is set with jumpers. Since the board doesn't
support parity, a jumper must be installed to disable parity checking.

3.1. Shared Memory Board Configuration

The shared memory board has four jumper blocks. This section covers how they have been
set to operation in the DARK testbed.

» K4 — Test Connector — Pins 15 and 16 are jumpered to disable parity checking,
since the MVME133A processor boards do not check or generate parity
information.

e K3 — Address Mode Select — All jumpers are removed to select continuous
address space.

e K1, K2 — Address Select ~ Jumper A20 is removed to set the base address of
the memory at 16#100000%.

CMU/SEI-89-TR-19 249

4. VME Chassis

The DARK testbed uses four Motorola MVMES45 chassis to hold all of the processor node
hardware, namely two MVME133A CPU boards, shared memory board, and two MZ8305
Quad Parallel Pot VME modules, as shown in Figure 36. The MVME945 chassis is
designed to house industry standard VME modules, and may be used for desk-top or
rack-mounted operation. The VMESA4S card cage holds up to 12 full height VME boards.
The boards are inserted into guides from the front of the chassis. On the rear of the
chassis, the P2 connectors can be accessed for connecting I/O cables or setting bus
jumpers. Refer to the MVMES945 Chassis User's Manual for more details on the location
and function of the jumpers.

The power supply is approved for 400 watts. It requires one 115 VAC outlet, and supplies
the following vottages:

e +5VDC @ 50A
¢ +12VDC @ 10A
e-12VDC @ 5A

The chassis contains a 12-slot, 32-bit VME bus backplane and provides forced-air cooling
for the VME modules. The VME modules are cooled by air drawn in from the bottom of the
chassis by two fans, forced past the VME modules, and blown out the top of the chassis.

*.Q‘ééff&.g‘*q’y&
NAddr s
/
oy

"«“q,

N\
AN

AN

N
|
NN

Figure 36: Chassis Hardware

250 CMU/SEI-89-TR-19

4.1. Backplane Jumper Configuration

Each of the 12 P1 connectors, except slot 1, has two sets of jumpers that have to be
configured for any of the boards plugged into the backplane to operate correctly. Jumpers
are required in all empty siots and are removed for slots containing boards. The jumpers
pass signals through each empty siot and on to the next.

The following is a list of the sets of jumpers:

e Bus Grant Signal headers, J3 through J12 - have four jumpers BGO, BG1,
BG2, and BG2. These signals are part of the bus arbitration logic and are
necessary to control which device gets control of the bus.

e The IACK Signal headers, J13 through J23 - has only one jumper each. These
jumpers are used to form a daisy-chain for acknowledging interrupts.

The five VME boards are assigned to slots in the chassis. The order of the boards
determines part of their bus request and interrupt p.iority. The only absolute requirement is
that the system controller be in siot 1. The order in which the boards are inserted into the
chassis in the DARK testbed, from left to right:

1. Slot 1 — Nproc MVME133A processor

2. Slot 5 — Kproc MVME133A processor

3. Slot 10 — Shared Memory MVME225-1

4. Slot 11 — Input Port Paralle! interface MZ8305
5. Slot 12 — Output Port Parallel Interface MZ8305

Again, except for slot 1, which does not have any jumpers, all of these slots have their
respective jumpers removed, so the signals do not bypass boards.

CMU/SEI-89-TR-19 251

5. Equipment Rack

The four VME card chassis are mounted in two 19-inch equipment racks. Two doors,
located on the front and rear, provide access to the chassis mounted inside. The front door
is tinted Plexiglas, while the rear door is sheet metal with ventilation holes. The chassis are
mounted horizontally, one on top of the other, as shown in Figure 37. The rear door permits
access to the rear of the chassis and the cabling between each processor node. One
surge-protected, mutti-plug, power strip distributes AC power to two chassis in each rack.

— ||

N

L]
=

Figure 37: Equipment Rack

252 CMU/SEI-89-TR-19

6. Host System

This section discusses the host system used to develop and download the Kernel and
application.

The host system consists of four uVAx-Il computers clustered together and tied into the SEI
local area network. They are called DARKA, DARKB, DARKC, and DARKD. DARKB abd
DARKC are the only uVAX-lis connected to the processor nodes, as shown in Figure 5. The
others are only used for code development. Four serial communication lines (debug port
and a downioading port for the Kproc and Nproc) run between each node and the DARKC
uVAX-Il.

During the development process, the host machines provide support for many activities.
The software is created on a project member’'s workstation, then transferred to one of the
hosts, or entered directly on a host. After compilation and linking, the executable images
are downloaded using either the Debug ROM downloader, or Telesoft's download facility.

Using both the debug ROM and Telesoft's Ada development system, it is possible to debug
software while it is on-line and operating. The debug ROMs provide only basic debug
operations, while the Telesoft symbolic debugger is more versatile and able to show how
execution is proceeding relative to the Ada source code.

An alternative means of downloading, called VMSLink, is also available. It consists of
VMSLink software, which can be run from any host machine in the cluster, and an ethernet
board in each chassis.

6.1. Serial I/O Ports

Two out of three ports available an each processor board are used during the development.
The debug monitor and TeleGen2 runtime use the debug port, and the TeleGen2 download
system uses port B. The host system is not connected to Port A on either the Kproc or
Nproc.

In total, there are 16 serial lines connected to the host system. To handle all of the these
serial lines, DARKC is equipped with two DHQ11 serial cards. There are three cards (two
installed in DARKC and one in DARKB) that provide a total of 24 asynchronous serial lines
for the host system.

Figure 38 is a cross reference between DARKC host ports and the serial ports on the
processor boards in the testbed. For example, CPU 0 is the Kproc on Node 0. The TXAO
port of DARKC is connected to the debug port on CPU 0.

CMU/SEI-B9-TR-19 253

CPU # Processor Node Name Debug Port Download Port
CPUO Kproc Node 0 TXAO0 TXBO
CPU 1 Nproc Node 0 TXA1 TXB1
cPU2 Kproc Node 1 TXA2 T™XB2
CPU3 Nproc Node 1 TXA3 TXB3
CPU4 Kproc Node 2 TXA4 TXB4
CPUS Nproc Node 2 TXAS TXB5
CPUG6 Kproc Node 3 TXA8 TXB6
CPU7 Nproc Node 3 TXA?7 T™XB?7

Figure 38: VAX Ports to Testbed Ports Cross Reference

254

CMU/SEI-88-TR-19

7. Test Equipment

This section covers the test equipment used to debug, monitor, and measure performance
of the Kernel and the application. Electronic test equipment is used in the DARK Project for
several activities, including:

» Measuring performance

» Troubleshooting hardware problems
» Monitoring software efficiency

¢ Debugging software

During DARK software development, the performance of critical sections of Kernel code are
measured, and if not found to be satisfactory, optimized. The test equipment is used as a
tool to help fine-tune the Kernel's performance. The final performance measures are taken

‘and used to compare against the required performance measures recorded in the Keme/

Facilities Definition.
The test equipment is used to help isolate problems when hardware components fail.

The operational behavior of the demonstration application running on DARK will be fully
understood only when it has been implemented and tested. The test equipment is used to
locate and verify correction of certain efficiency, or timing, problems. The test equipment
also has the capability to help trace and debug certain kinds of logic errors.

7.1. Test Equipment Hardware

The DARK team had several different pieces of test equipment available for use, including:

» Tektronics 2223 Analog Oscilloscope

» Gould K115 Logic Analyzer

¢ Gould Microprocessor disassembly pod

» Gould CLAS 4000 with support for 2 MC68020 boards.
¢ Tektronics 2432A Digital Storage Scope

¢ Voit Ohm Meter

¢ XYComm VME Board Extender

CMU/SEI-89-TR-19 255

8. Low-Level I/O

The Kproc and Nproc software accesses ‘eatures of the target hardware through low-level
I’'O. Low-level I/O is necessary for two reasons. First, the compiler may not provide facilities
required to accomplish a needed hardware operation. Second, although such facilities may
be provided, they may not satisfy performance requirements of the application or the Kernel.

Low-level I/O is usually necessary to access special status information controlling the
operation of devices on the target hardware, or for access memory directly. Status may be
needed for such things as deiermining the state of a device, synchronizing with another
device, detecting error conditions, or polling. The target hardware has several devices that
must be controlled through low-level /O by setting or changing the mode of a device,
sending interrupts, or setting status in some port or device register.

Low-level /O is accomplished through read or write operations to registers or memory
locations. The MVME133A 68020 processor board is designed so that all device registers
are mapped, or assigned, to have addresses in the address space of the MC&8020
Microprocessor.

Since the software that performs low-level I/O operations is highly dependent on the target
hardware, it has been isolated to several Ada packages.

The following devices are part of the MVME133A 68020 microprocessor board and are
involved in low-level I/O operations:

e Local ROM banks

¢ Local dynamic RAM
 Multi-Function peripheral — MFP
¢ Module Status Register - MSR

e Serial /O port B - SIOB

¢ Serial /O port A — SIOA

» Real-Time Clock — RTC

e Interrupter

o Parallel Intertace and timer — PI/T

These devices are listed in the order they appear in the address space of the MVME133A
68020 microprocessor. The devices external to the the MVME133A board (e.g., PI/T) exist
at higher addresses than the interrupter.

Each processor board (Nproc and Kproc) in a node has its own devices to control. The
Kproc uses low-level I/O to access the shared memory. The Nproc uses low-level /O to
control the four 68230 Parallel interface/Timer devices on two MZ8305 parallel interface
boards and also to access shared memory.

256 CMU/SEI-89-TR-19

8.1. Software

The Telesoit compiler provides support for low-level I/O in three basic ways: Machine Code
Insertion (MCI), address clause, and imported subprograms.

MCI is provided through a package cailled Machine_Code. MCI allows single machine
instructions to be inserted in-stream of the Ada source code. The compiler will make sure
that the inserted low-level machine instructions are placed in the appropriate place among
other machine instructions generated as a result of the high-level Ada statements. The
Telesoft MC! supports all of the machine instructions available for the 68020
microprocessor.

The address clause for objects may be used to access hardware memory, registers, or other
known locations. Symbolic names may be given to physical memory locations and
accessed as if they were variables using the address clause.

The Ada programming language defines a pragma "interface" that allows Ada to interface
with subprograms written in other languages, including assembly. The pragma interface
statement declares a subprogram that will be imported and used in the Ada source code.

CMU/SEI-89-TR-19 257

9. Interrupts

The mechanism for initiating and handling interrupts on the VME bus and MC68020
processor is well established and documented; therefore only a few important details of
interrupt handling and the arbitrary and specific assignments made for the DARK hardware
implementation are covered in this section. Refer to the MC68020 32-Bit Microprocessor
User’'s Manual and VMEbus Specification document.

9.1. Interrupt Request Levels

Each interrupt source interrupts on one of seven interrupt request lines (IRQ1-IRQ7). These
lines are prioritized, with IRQ7 having the highest request priority. Some of the interrupt
sources have been permanently assigned to a particular request level. The rest may be
assigned through jumpers (with some fimitations). Generally, more than one interrupt
source may be assigned to one interrupt request level.

There are jumpers on each processor board to connect each interrupt request line from the
VME bus to the boards’ interrupt handling logic. Since the function of the Kproc and Nproc
differ, the two boards' interrupt request lines are jumpered differently. All on-board
interrupts bypass these jumpers.

9.2. Interrupt Vector Numbers

During interrupt processing an interrupt vector number is obtained for each acknowledged
request. An interrupt source either provides its own vector number or one is generated for it
based on the interrupt request line it issues the request on. The processor uses the vector
number to associate an interrupt service routine with the interrupt source. Each interrupt
source must have a unique interrupt vector number, unless the service routine handles more
than one interrupt source with respect to one processor.

9.3. Interrupt Configuration Summary

Figure 39 summarizes how the different interrupt sources are configured with respect to
interrupt request levels and interrupt vectors. If a particular device is shown once when in
fact there 1s more than one, all have been configured the same. For example, in one
chassis, there are two MC68901 devices (one on each processor board). Both are set up to
have the vector numbers shown. This does not conflict with the rule about unique vectors
for each interrupt source, because these are local to a processor board, and the other
processor cannot respond to them. On the other hand, the interrupts from the parallel
interface boards must be unique across the VME bus, because both processors can
potentially respond to these interrupts.

258 CMU/SEI-89-TR-19

Interrupt Interrupt Interrupt
Board Name Device Source Vector Request Level
Parallel /0 "In" Port
MC68230 PI/T #1
PIO 16#42# IRQ4
Timer (24A) 16#444 IRQ7
MC68230 PI/T #2
PIO 16#4A# IRQS
Timer (24B) 16#4C# IRQ6
Parallel 1/O "Out" Port
MC68230 PI/T #1
PIO 16#52# IRQ4
Timer (24C) 16#54# IRQ7
MC68230 PI/T #2
. PIO 16#5A# IRQ5
Timer (24D) 16#5C# IRQ6
Kproc & Nproc
Abort Logic 16#1F# IRQ7
ACFail Logic 16#1F# IRQ7
MC683901 MFP
Timer (8A) 16#6D# IRQ5
Timer (8B) 16#68# IRQ5
Timer (8C) 16#65# IRQS5
Timer (8D) 16#64# IRQS
Z8350 SCC
Port A TX 16#78# IRQ6
Port A RX 16#7C# IRQ6
MM58274 Real-Time Clock 16#1C# IRQ4
Interrupter Logic 16#FF# IRQ3
EXOS 202 _
Ethernet Driver Unknown IRQ6

Figure 39: Interrupt Summary

CMU/SEI-89-TR-19

259

10. Memory Map

Figure 40 lists ail of the major devices and their base address assignments. Each
assignment is identified as either hard-wired or jumpered. The hard-wired addresses may
not be changed; the jumpered addresses may change.

Addresses are assigned so they do not conflict with each other. All of a processor board
devices, except memory, are not visible to the other processor (off the board). This means,
for example, that the real-time clock on each processor board can have the same address.

|

Board Name Reterence Address Range

Kproc & Nproc Local Memory 16#00000000# - 16#000FFFFF#
Memory Shared Memory 16#00100000# - 16#001FFFFF#°
Kproc Nproc Memory 16#002000004 - 16#002FFFFF#
Nproc Kproc Memory 16#00300000# - 16#003FFFFF#

Kproc & Nproc
Kproc & Nproc
Kproc & Nproc

Module Status Register
Multifunction Peripheral

Serial Communication Controller

16#FFF80000#1°
16#FFF80001#"!
16#FFFAQ000# - 16#FFFA0003#

Kproc & Nproc Real-Time Clock 16#FFFB0000#
Kproc & Nproc¢ Interrupter Logic 16#FFFB8000#
Paralle! I/O “In" Port PYT #1 16#FFFF0040# - 16#FFFFO06F#
Parallel /O "in" Port PUT #2 16#FFFFO000# - 16#FFFFO02F#

16#FFFFO1404# - 16#FFFFO16F#
16#FFFFO100# - 16#FFFFO12F#
16#r FFF8000#

Paralle! I/0 "Qut" Port PIT #1
Paralle! /0 "Out" Port PVT #2

EXOS 202 Status Register

Figure 40: Memory Map

%Shared memory is accessed over the VME bus in this address range by both the Nproc and Kproc.
®This is the first of many even-valued addresses at which this register can be referenced.

"1This is the first address of a group of registers.

260 CMU/SEI-89-TR-19

11. Network Cable

The network data path extending between each node is made of two flat ribbon cables.
These cables are specially constructed to handle the handshake lines and terminate unused

pins.

All eight pieces of flat ribbon cable (two per node-to-node segment) are constructed the
same. Signals H1 and H3 on both ends are crossed to H2 and H4 cn the other end,
respectively. Signals T,, and T, on both ends are not connected. See Figure 41 for a
schematic of the cable.

1 H4 H4 1
2 GND GND 2
4 GND GND 4
s H) e ——— H3 s
6 ND GND []
7 Tp — g — Tin 7
] GND GND]
9 P8? PB7 9
10 GND 10
11 PB6 P86 13
12 GND GND 12
13 PBS PBS 13
14 GND GND 14
13 PB4 PB4 15
16 ND 16
17 PB3 P83} 17
18 ND GND 18
19 PB2 PB2 19
o] GND GND 20
21 PBL PB1 21
22 GND GND 2
2 P8O P8O 3
u ND GND u
23 PA? PA? 2
2% GND GND 2%
F1d PAG PAG n
23 GND GND s
29 PAS PAS 29
30 GND GND p.)
N PA4 PA4 ETt
2 GND GND 2
b3 PA3 PA) 13
GND GND 34
3s PA2 PA2 33
OND GND
3 PAl PAl
a8 GND GND 3
39 PAO PAO 39
e GND G
4l NatUsed Not Used 4l
42 42
43 H2 o - ——— 2 43
4“ GND GND “
43 Not Used —— - Not Used s
46 aOND G 46
47 Hl e S — W Pt
48 GND pHA
49 Tl — e T oMl Pty
50 GND GND $0

\ 50 pin Ribbon Cable Connectors /

Figure 41: Flat Ribbon Cable Schematic

CMU/SEI-89-TR-19 261

12. Synchonization Bus

The synchronization bus, or "sync bus” for shon, is used to provide a way to broadcast time
for the Kernel during time synchronization. All of the Kprocs on the network are connected
to the sync bus.

The Kemel software that processes the time synchronization event is interrupt-driven. So,
when synchronization occurs, all Kprocs respond immediately with the minimum amount of
de'ay.

12.1. Bus Description

The interface to the sync bus is made through port A on the P2 connector on the Kproc
board. Port A is one of two serial ports on the Z8530 SCC chip. Unlike port B, which uses
RS-232C line drivers, port A uses RS-485/422 line drivers. This particular line driver permits
one master (at a time) and multiple slaves.

The sync bus consists of two wires that carry a differential voltage, asynchronous serial data
signal.

Figure 42 is a schematic of the sync bus (also refer to the schematic of the P2 connector in
Figure 43). The sync bus schematic shows how the two wires of the bus are connected to
the Send Data (SD), and Receive Data (RD) lines of port A's RS-485/422 drivers. Note that
the SD ~nd RD lines are connected together at the bus cable. This is so that the master can
monitor 10r data collisions that would result if another Kproc attempts to become master at
the same time.

The monitoring is required because the designers of the MVME133A board did not
implement all of the RS-485/422 handshake signals, such as RTS, CTS, and DCD. If, in the
future, the Kernel is ported to another target and this same approach for time
synchronization is used, a more complete implementation of the RS-485/422 handshake
signals is recommended.

12.2. Bus Operation

The relative frequency of time synchronizztion should be low. Normally, when no
synchronization is in progress, all the Kprocs are set for slave operation. Port A is set for
slave operation when:

» Transmitter output signal is electrically isolated from the SD signal lines.
* Receiver data input is monitoring the RD signal lines.
» Receiver interrupts are enabled.

When there is a call to synchronize time by an application process, the Kernel does several

262 CMU/SEI-89-TR-19

Download Port
EABAB ot B
Connector Rs-zjzc CBA
o 000
g of-2 1 &g %—10 00
= 3¢ i
o o3 RTS .. 00 Node 0
o °t* s —q0 00 <
obs €IS __ 54000)
o T DR« loo0o0 €
g oJ-? GND Tc—40 0 O)
o ot — DCD__4c—10 0 0 ¢
o (o] 000 Port A
oo RS485422 | |
o g oo g (T wisted-pair cable) ar
o)
o 000 Node 1
°o 0 0 op—1u-2a7 17 e
00 o142 Ul Lol le
0 O O4—1Sa—=1np <[{¢
o0 o}—iscR-] ==1
ooo0
co0o0 CF
000
0 O O4—20a
96-pin DIN o0 g' RRISEY
male cannector GND \
(wire-wrap tails) 0 O O—22a - o
000 Synchronization
o000 Remote reset Bus cable
000 lines (Twisted pair cable)
oro
oJo0
ooco dch
g g g Node 2
000)
000 b
|Th
Node 3.
M J
‘_
e
Figure 42: Kproc to Synchronization Bus Interface
CMU/SEI-89-TR-19 263

Z8530
SCC

TXDA

RXDA |

MVMEI133A Board

RS-485/422
Line dnvers

SD+

SD-
RD+

P2 backplane

y Socket

- as w wn e

Synchronization bus

)

>

|

N

N

(4

Figure 43: P2 Cable Hamess Schematic

264

CMU/SEI-89-TR-19

operations. One of the last is to assert port A mastership. This must be done before the
time information can be broadcast to the other Kprocs. Port A mastership is attained by
having:

s Transmitter output signal connected to the SD signal lines.

¢ Port A receiver interrupts disabled.
 Port A receiver input monitoring the RD signal lines.

A test byte is put onto the sync bus to verify that no other port is asserting itself as master.
The receiver is checked to confirm that the byte received is the byte sent. In the meantime,
all of the slave ports respond to the test byte by interrupting its associated Kproc, and then
preparation begins to receive a new time to synchronize on. If the test byte is not received
correctly, appropriate actions are taken.

CMU/SE!I-89-TR-19 265

13. P2 Backplane Connector Wiring

The schematic in Figure 43 is of the connector that is made to plug into all the processor’s
P2 sockets on the VME backplane of the chassis. This connector and cable harness
provide access to several interface signals made available at P2 from the MVME133A
board. The interfaces include:

e Port A RS-485/422 serial lines
e Port B RS-232C serial lines
¢ Remote Reset control lines

Port A is used for connecting to the synchronization bus; Port B is used for the download
port and connects to the host system. The remote reset control lines provide a way to
remotely perform a reset of the processor.

There are eight identical harnesses, and all of them are identical. The port B lines on the
Nproc's are not connected to anything.

266 CMU/SEI-88-TR-19

.
i
i
i
:
I
I
I
I
!
;
'
}
I
!
1
!
:
:

IX. TeleSoft Ada Compiler Dependencies

This part lists and explains those aspects of the DARK software artifacts that are dependent
on the specific Ada compiler used. To assist with the porting and maintenance process, this
part explains the ways in which the DARK software depends on the specific Ada
development systems used.

CMU/SEI-89-TR-19 267

1. Major Dependencies

The DARK software exhibits dependencies on the Ada development system in three major
areas:

o Aspects of basic software architecture and design
» Representation and use of basic data types
e Encapsulation of hand-coded assemtler

These will be discussed at successively greater levels of detail.

1.1. Software Architecture and Design

Some aspects of the DARK architecture were constructed, in part, to build on known
strengths of the Ada system and avoid known weaknesses.

For example, the decision to represent execution-time errors by Ada exceptions was taken,
in part, because the compiler handled guarded regions very efficiently. As another example,
the DARK software avoids records with discriminants entirely because of demonstrated
implementation inefficiencies.

These decisions require review if the software is to be moved to another Ada system. In
most cases, we believe we have not made it impossibly difficult for the porter to modify, or
even reverse, the most significant architectural decisions.

The DARK architecture is discussed in detail in Chapter 3.

1.2. Basic Data Types

The DARK software is largely embedded systems code, and as such must interface closely
to the target machine in many places. It must be able to manipulate basic date types,
memory addresses, device registers, and similar low-level target entities. As far as
possible, it must do so robustly and clearly, through the medium of the Ada language.

The software therefore uses Ada representations of basic machine objects, defined as data
types with necessary operations. These Ada definitions depend on the Ada compiler's own
view of the machine, as captured in the package System. A different compiler, for a
diffe ‘ent or even the same machine, may take a different view, and in consequence the
DARK definitions might need to be changed.

The required data types are given in detail in Chapter 4. The specific definitions used on
each target are given in the appendices.

268 CMU/SEI-89-TR-19

1.3. Encapsulation of Assembler

The DARK software contains some small modules written by hand in the target assembier
code. For example, the DARK scheduler's basic context save and restore operations
manipulate target machine state directly, and hence must be written in machine code.

In order for these modules to interface properly with the Ada code in which the rest of the
Kernel is written, the compiler conventions must be relied upon in great detail. If a different
compiler uses different conventions, the encapsulated assembler will have to be changed.

Note that this is a separate issue from the issue of recoding the modules for a new target.
For example, another Ada compiler on the same target might define a different procedural
interface, passing parameters in a different way. The called module would remain MC68020
Assembler, running on the same hardware, but would still have to be modified.

The conventions that must be understood and observed are given in detail in Chapter 5.
The specific conventions used for each target are given in the appendices.

CMU/SEI-89-TR-19 269

2. Software Architecture and Design Dependencies

This chapter gives the main compiler dependencies, explains the reasons behind them, and
indicates what modifications might be feasible as a consequence of a port or compiler
upgrade.

2.1. Code Customization

The most obvious and pervasive compiler-dependent architectural feature of DARK is the
manner in which it allows customization of the code by acceptor sites and other users. The
bulk of this customization involves the enabling and disabling of error checks.

The DARK model is the following:

e Error-checking code can be included in the Kernel, or excluded from it, at the
option of the acceptor site.

e The inclusion of the code is controlled by a conditional statement, wherever
possible at the outermost level of nesting within the relevant procedure.

¢ The condition driving the conditional statement is a generic formal parameter of
the package, of a simple scalar type.

¢ Customization involves instantiating the package with a corresponding generic
actual parameter that is an explicit constant.

The DARK model relies on these features of the Ada compiler:

e Generic instantiation is performed by code substitution at compile time.
¢ Constant actual values are substituted for the formal parameters, and simple
constant comparisons will be done at compile time.

e Code guarded by conditional statements that are known at compile time to be
false ("dead code") will be removed by the compiler and will not generate any
object code. (This is not necessary for correct functioning of the Kernel, but
makes it smaller and faster.)

These simpie mechanisms are found in many Ada compilers, and they are accepted by the
Ada community as a conventional way of achieving "conditional compilation™ in Ada.
However, should a compiler not support them, the customization cannot be achieved in this
way. The brute-force aiternative is to edit the Ada source code to remove any unwanted
code; to help achieve this, all source code lines dealing with removable error checking are
individually commented.

276 CMU/SEI-89-TR-19

2.2. Representation of Errors

As discussed above, the DARK primitives can be customized to detect and report various
execution-time errors. There are also some error conditions that cannot be suppressed,
either because they are pant of the semantics of the primitive or because continued
execution in their presence wouid be impossible.

The Kernel systematically represents error conditions by user-defined exceptions, and
reports them by raising the exception, presumably to be handled by the invoking code.

For this to be feasible, certain compiler features are assumed:

» The execution cost of guarded regions and unraised exceptions is very small,
preferably zero.

e The cost of raising and propagating an exception is reasonable; in particular, it
is not so great as to prevent timely recovery by the exception handler.

» The exception mechanism can function safely and accurately in the context of a
DARK process.

The first two assumptions can be verified by studying the compiler documentation or (at
worst) its output. The third assumption must be tested more carefully, with these issues in
mind:

¢ Does the fact that a DARK process executes on its own stack affect exception
semantics?

¢ Will the process "stack plug" effectively prevent exception propagation out of a
process?

e Can exceptions propagate correctly out of, and through, any hand-coded
assembler subprograms?

¢ Is the propagation mechanism re-entrant at the DARK process level, so that a
process can be sliced during exception propagation?

If, for any reason, it is felt that the exception mechanism should not be used to indicate
errors, then the Kernel code could be changed, albeit at some cost, to use status codes
instead of exceptions. The information recoru for a DARK process contains a component
that can be set to indicate an error condition. This component is used internally by the
Kernel scheduler and context switch routines, but it would be straightforward to add an
enquiry function that allowed a process to interrogate its own error status.

The one DARK facility that relies absolutely on the exception mechanism is the alarmm, no
other reliable means exists in Ada for aborting execution of linear code and transferring
control to another part of the same process. It might be possible to revise the alarm
semantics so that control is transferred to an Ada-labeled statement, but that is both poorer
methodology and a less portable solution.

CMU/SEI-89-TR-19 2N

2.3. Module Initialization

The Kernel is structured into several modules in a dependency graph of several levels.
Many of these modules contain data structures or device-handling code that requires
initialization.

The current implementation tries as far as possible to use explicit initialization procedures
called explicitly from the top-level modules. It restricts "automatic® module initialization,
done by the statement sequence of the package body, to as few moduies as possible. Also,
it does not assume any specific order in which automatic initialization will be done.

This strategy should be robust against compiler differences in package elaboration order,
and should work correctly without the acceptor site having to change module dependencies
or introduce pragma Elaborate. However, the developers found some very subtle
elaboration order problems, so they cannot assert the probiem is completely solved.

However, there are some initialization dependencies between processors comprising a
DARK target network. In particular, the communication mechanism must be initialized and
ready before the rest of the Kernel can begin execution; since on the first target the
communication is done by separate processors running separately linked programs, this
dependency cannot be captured in the Ada code. In addition, most Kernel internal data
structures, and some visible to the application, rely on the Ada facility that allows explicit or
default initialization of declared objects.

Correct initialization of the Kernel must be checked as part of the test of the port.

2.4. Chapter 13 Issues

Those parts of the Kernel that manipulate the target machine rely to some extent on the
features provided in Chapter 13 of [ALRM 83]. If any of them are absent, it will not be easy
to find alternative strategies, since the implementors have used these features only when
they believed them essential.

The specific features used, and their purposes, are:

» Size specifications [13.2(a)] to force the compiler to use operations of the
correct size for a hardware device register. Failure to do this will cause a
hardware memory reference trap.

» Record representation clauses [13.3] to construct Ada objects with the exact
layout required by hardware devices. They are also used to specify the layout
of objects transferred between processors. |If this cannot be done, the
device-handling code, and its associated data structures, must be rewritten in
assembler.

¢ Address clauses [13.5] to place objects shared between processors in explicit
places in shared memory. If this cannot be done, the same effect might be
achievable via the linker. As a last resort, address binding can be done by
using access objects set by hand to designate the correct memory addresses.

LY

272 CMU/SEI-89-TR-19

Eh Bl & AN BN & BN B B e

e The package Systemn [13.7] for the basic machine types, as explained in the
next chapter.

e The system-dependent named numbers [13.7.1], to obtain the extrema of the
basic types.

e The attribute 'Address [13.7.2], to compute the addresses of both subprograms
and data objects. This is essential if the Kernel is to be ported, since, for
example, it must be able to take the 'Address of a subprogram that is to be a
process, and the 'Address of a data object whose contents is an inter-process
message.

e The attribute 'Size [13.7.2] of basic types and of arrays, to allow the Kernel to
compute and allocate storage.

» The machine-code insertion facility [13.8], used very sparingly.

e The pragma Interface, to allow the Kernel to invoke machine-code subroutines.
This is essential.

e The pragma Inline, for subprograms whose bodies are small enough. It is
especially used for shell procedures that merely call other lower-level or more
general procedures. This is not essential, but allows a good compromise
between execution efficiency and functional abstraction. The Kernel assumes
that, if the pragma is provided, it can be used to inline across compilation unit
boundaries.

e The generic Unchecked_Conversion [13.10.2] for several low-level purposes,
as explained in the next chapter. It is probably essential that this facility work,
and work with high efficiency, on all simple types.

There is very little in the way of a contingency plan should some of the above language
features be absent. In general, they provide facilities that cannot be obtained in any other
way, and that are an essential part of much embedded systems programming.

2.5. Pragmas

The Kernel uses the following standard pragmas:

e pragma INLINE. This is not necessary; it is used to gain some extra efficiency
by hoisting small routines. The structure of the code assumes that the pragma
works across separate compilation boundaries. As a result of a restriction in
the compiler used to develop the Kernel, this pragma is never applied to the
result of instantiating a generic subprogram. One consequence is that
instantiations of unchecked_conversion have almost always been hoisted by
hand into package specifications.

e pragma INTERFACE. This is used to allow the Ada code to call lower level
routines written in machine 2nde, as explained in detail in Appendix D.

CMU/SEI-88-TR-1¢ 273

2.6. Ada Use Subset

As well as making certain assumptions about what the Ada system does provide, the Kemel
was designed and written under certain assumptions about what it need not provide. In
effect, it employs an application subset of the language, avoiding constructs that the
implementation team believed either unnecessary or possibly inefficient.

These assumptions should not affect a port, since in general they have led to simpler and
more straightforward code. They are recorded in full in a project-specific Ada style guide.
However, the most significant unused features of Ada are given here:

o The Kernel makes no use of tasking.

e Records with discriminants are not used. This has no visible impact on the
application, but has caused some slightly strange coding styles in parts of the
Kernel.

¢ Objects of dynamic size are never declared within subprograms.
e Subprograms are not nested within other subprograms.

e Allocated storage is never deallocated, either explicitly or implicitly. All uses of
the Ada allocator could be removed from the Kernel, if it seemed desirable for a
port to use a custom storage-management system.

» The separate clause is not used. This is to avoid the name management
problems that arise with library subunits.

274 CMU/SEI-89-TR-19

3. Basic Data Types and Operations

This chapter gives the main hardware data types and operations required by DARK and
explains how they have been constructed in Ada. It indicates the compiler dependencies
involved in this process. These dependencies are encapsulated in the package
hardware_interface, which is included in Appendix E.

Target-dependent values, that must be computed afresh for each machine, are indicated
here by .

3.1. Sizes of Data Types

The sizes of the basic machine data types are defined as manifest constants:
bits_per byte : constant := []:

byte : constant := []:
woxd : constant := []:
longword : constant := [}’

On a typical 32-bit target, these values will be 8, 1, 2, and 4, respectively.

3.2. Untyped Storage

Access to the basic machine storage units is provided by two data types, one defining the
smallest addressable unit as an integer type, and the other defining it as a record composed
of individual bits. Representation clauses are used to enforce the correct mapping from the
Ada level to the hardware:

type hw_[unit] is range []..[];
for hw_[unit]’'size use []:

type hw_bits[N] is record

bit[K] : Boolean:

-- repeat for all N bits, in the appropriate order
end record;

for hw_bits[N] use record

(1

end record;

On a typical byte-addressed machine, the hardware unit will be an unsigned 8-bit byte,
range 0..255. The corresponding record type will then be:

CMU/SEI-89-TR-19 275

type hw_bits8 is record
bit0 : Boolean:
bitl : Boolean:
bit2 : Boolean:;
bit3 : Boolean:;
bitd4 : Boolean:
bit5 : Boolean:;
bité : Boolean;
bit7 : Booclean;
end record:;

The value conversion is also defined from the integer type to the record type, using an
instantiation of unchecked_conversion:

function to_hw bits[N] is
new unchecked conversgion (hw_[unit], hw_bits[N]):

If a variable V has been declared as a hw_{unit], the individual bits of its current value can
be accessed by the function call: to_hw_bits[N] (V;).

It is also necessary to be able to convert variables from one type to the other; this is
achieved by the usual Ada device of defining two access types and a value conversion
between access values. This in effect allows a pointer to an object of one type to be

converted into a pointer to an object of the other type: l

type hw_([unit] ptr is access hw_[unit]:
type hw bits[N] ptr is access hw_bits|[N]:

function to_hw_([unit] ptr is
new unchecked conversion(system.address, hw_[unit]_ptr):

function to_hw bits[N]_ptr is
new unchecked conversion (system.address,hw_bits[N]_ptr);

function to_hw bits[N]_ptr is
new unchecked conversion (hw_[unit] ptx, hw_bits[N]_ptr):

Hence, a given bit of the variable V could be modified by:
to_hw _bits[N] ptr(V’'address).bitK := new_value_for bitK;

3.3. Integer Types

The basic integer types are defined by giving explicit ranges. Representation clauses are
used to enforce the correct mapping from the Ada level to the hardware:

276 CMU/SEI-89-TR-19

S .

- N N I T

;E - .-

type hw_integer is range [] .. []:
for hw_integer’'size use [] * bits_per byte;

type hw_ghort_integer is range [] .. []:
for hw_short_integer’ size use [] * bits_per_ byte;

type hw_long_integer is range [] .. []:
for hw_long_integer’size use [] * bits_per byte:

The Kernel assumes that a hw_integer is at least 16 bits wide, and a hw_long_integer is at
least 32 bits wide.

In addition, the important subsets of the basic integer types are defined explicitly. These
correspond to the Ada natural subset—the non-negative integers within the range—and the
positive subset—the strictly positive integers within the range:

type hw_natural is range 0 .. hw_integer’last;
for hw_natural’size use hw_integer’size;

type hw_positive is range 1 .. hw_integer’last;
for hw_positive’size use hw_integer’size;

type hw_long_natural is range 0 .. hw_long_integer’last;
for hw_long_natural’size use hw_long_integer’'size;

type hw_long positive is range 1 .. hw_long integer’last;
for hw_long positive’ size use hw_long_integer’size;

3.4. Duration

The target representation of the Ada type duration is defined; this must capture exactly the
representation used by the compiler:
type hw_duration is
new duration range -86_400.0 .. +86_400.0;
for hw_duration’small use (]
for hw_duration’size use [] * bits_per_ byte:;

CMU/SEI-89-TR-19 277

3.5. Machine Addresses

The Kernel must be able to generate the addresses of subprograms and objects, store
them, pass them around, and subsequentiy use them. It is necessary, therefore, to define
an appropriate address type, together with conversions from the Ada type System.Address:

type hw_address is []:

function to_hw_address is
new unchecked conversion(hw_long integer, hw_address);

null hw_address : constant hw_address
:= to_hw_address(hw_long_ integer’ ([]))’

On a conventional von Neumann machine, the type System.Address will probably be an
integer type, and type hw_address can simply be derived from it. The null value should if
possible be a value that will cause a hardware trap if an attempt is made to use it as an
address; typical nulf vaiues are O and -1.

3.6. Strings

Finally, a suitable string type is defined:
type hw_string is []:

This will almost always be a type derived from the standard Ada string type.

278 CMU/SEI-89-TR-19

|

Tt - En B AR Bt ES ER .

A N .

4. Encapsulation of Assembly Code

This chapter explains the principles behind the design of DARK hand-coded assembler
modules and their interface to the Ada code. It outlines the considerations that such a
design must address, and the compiler dependencies involved.

4.1. Linkage

First, the compiler must provide a means of invoking assembler subprograms from Ada.
This should be done by the standard Ada pragma Interface. However, it might also be
necessary to use appropriate naming conventions for the subprograms, since the machine
assembler and linker might not obey the Ada conventions concering iexical identifiers.
Particular issues to be addressed are:

e Legal characters

 Maximum allowed length

e Case sensitivity

» Possible clashes with compiler-generated names

It is also necessary to be able to inform the Ada library or binder that certain bodies are in
assembler, so that it does not complain when they are not found in Ada. This is often done
automatically as a consequence of the pragma. Finally, the real bodies must be linked with
the Ada code to form the executable image; this may be done by a special command to the
Ada linker, or by importing the bodies into the current library. :

The assembler code must contain the appropriate cross-reference directives to make any
defined symbols known to the Ada linker or debugger.

4.2. Program and Data Sections and Attribuic~s

Any assembler code must be assigned to the correct code section or Psect, with the correct
attributes. This is usually done by assembler directives. These must be inserted in the
assembler code bodies in a manner prescribed by the machine assembler manual, and they
must conform to the conventions used by the Ada compiler.

Conventions that the hand coder might be advised to respect include:

¢ Declare code sections to be execute-only
¢ Use position-independent code
¢ Avoid jumping between different subprogram bodies

Similarly, any data objects defined at the assembler level must be aliocated in the
appropriate data sections, with the correct attributes, just as if the Ada compiler had created
them rather than the hand coder. Any conventions for allocating read-only and read-write

CMU/SEI-88-TR-19 279

data should be respected; for example, if the compiler stores string literals in a read-only
data area, so should the hand coder.

4.3. Data Representation

in the Kernel, some objects are accessed by both Ada code and machine code. It is
necessary for the machine code to understand the representations of these objects.
Objects passed from Ada code down to assembler code include simple integers, addresses,
values of type duration, and simple records.

Most data representation issues are captured by the declarations in Chapter 3; for any of the
types there introduced, the correct target representation is made explicit and guaranteed by
appropriate representation clauses.

Any record types that must be used by the assembiler level are defined in terms of the
simple hardware types, and their representation also is fixed by representation clauses.

4.4. Access to Ada Objects from Assembly Code

The Kernel has been structured so that no assembler subprogram requires direct access to
any Ada object. Where access to such objects is necessary, special subprograms have
been introduced that allow the relevant addresses to be passed as parameters, or returned
as results, from one level to the other.

For example, one assembler subprogram invokes the Kernel scheduler. This is done by
calling an initialization routine that passes as a parameter the address of the scheduler
subprogram; this address is saved in a static variable within the assembler module, and the
call of the scheduler is performed indirectly through this variable.

4.5. Access to Assembler Objects from Ada Code

The Kernel has been structured so that no Ada code requires direct access to any data
object created at the assembler level.

4.6. Procedural Interface

Any assembler subprograms must obey all appropriate parts of the Ada protocol for the
procedural interface. This includes:

¢ Entry protocol
» Exit and return protocol
o Register usage

280 CMU/SEI-88-TR-19

aE A& Ny 20 = um BN

Sl I EE B VP ey A A an WY B &

| e e

¢ Stack manipulation
o Parameter passing
» Exception propagation

The parameter-passing protocol of course depends on the number, type, and mode of the
parameters, and so will be different for different subprograms. The Ada conventions for
parameters and results must be copied exactly by the assembler code, for all appropriate
types and modes.

The issues involved are:

¢ Mode of transmission—value or reference

o Manner of transmission

e Order of parameters

o How to access in parameters

o How to set out parameters

o How to return function results

e What extra "hidden" parameters need to be passed

The protocol for saving and restoring registers may depend on how many registers the
assembler code subprogram uses. Some assemblers can generate this protocol
mechanically, but most cannot, and the hand coder must then take care to save and restore
all registers that ought to be saved and restored.

The rest of the protocol will usually consist of standard sequences that will be the same, or
almost the same, for all subprograms.

4.7. Exceptions

The assembler subprograms must perform all necessary action to ensure that exceptions
are correctly raised and propagated. This includes:

 Raising exceptions where appropriate

¢ Ensuring that exceptions are propagated out of assembler bodies

e Ensuring that exceptions are propagated through assembler bodies

¢ Informing the Ada runtime that a subprogram contains no guarded regions
¢ |dentifying any guarded regions

The current Kernel requires only the first four of these facilities, since no assembler code
contains a guarded region.

CMU/SEI-89-TR-19 281

Appendix A: Data and Control Flow Diagrams

The notation used for data and control flow is a modified form of the notation expounded on
by Paul Ward and Stephen Melior in their books on the design of real-time software [Ward
85]. The notation used is true to the intent of Ward and Mellor's notation. The only
variations are:

o use of rectangles with rounded comers for processes
¢ use of a square for external entities
Aside from these minor cosmetic changes, the data and control flow diagrams used follow

the conventions set forth by Ward & Mellor. Figures 44 thru 46 briefly expiain the symbols
available using this notation.

LA B B S R 2R R

Data Event
Store Store

A LR LN % N W W

a b

Figure 44: Store Notation

The data store icon, shown in Figure 44 (a), represents a place where data is held until
needed by a process.

The event store icon, shown in Figure 44 (b), represents a place where control signals are
held until needed by a process.

282 CMU/SEI-88-TR-19

-y Ty .

-/ Bm T

R el a2

. -, anwey
N \
N \
N
Data Lontrol \ Extgrnal
Transformation \Transformation v Entity
. N
AN R
a b c

Figure 45: Process Notation

The data transformation icon, shown in Figure 45 (a), represents a process that accepts
input data from a data flow(s), control signal(s) from an event flow(s), performs processing
on the input data, and transfers the data out over a data flow(s).

The control transtormation icon, shown in Figure 45 (b), represents a process that accepts a
control signal(s) from an event flow(s), performs processing on the control signal and
transfers information out over an event flow(s).

The external entity icon, shown in Figure 45 (c), represents a physical device capable of
generating and/or accepting data and control fiows.

CMU/SEI-88-TR-19 283

Interrupt
-
Data Event - /)
Flow Flow 7
~”~
———(- STseasasase \\ - ‘
a b c

Figure 46: Flow Notation

The data flow symbol, shown in Figure 46 (a), represents the transfer of data from one
process to another process or an external entity. This is a discrete transfer, i.e., the data is
available until read and then is no longer available via the flow.

The event flow symbol, shown in Figure 46 (b), represents the transfer of a control signal
from one process to another process or an external entity. This a discrete transfer, i.e., the
signal is available until read and then is no longer available via the fiow.

The interrupt symbol, shown in Figure 46 (c), represents transfer of a control from from one
design entity to another.

284 CMU/SEI-88-TR-19

R N e aa

- W A .

Appendix B: Kernel Interface Control Document

This appendix presents the format of the various Kernel messages described elsewhere in
this document. In particular, refer to Part IV, Communication Subsystem, Section 2.4 for the
exact definition of each message field.

Message Message
Operation Tag Sender Receiver Timeout Length ID Content

Kernel ACK ACKing originating NA 0 id of msg NA
message process procass being ACKed

' Kernel NAK NAKing originating NA 0 id of msg NA
message process process being NAKed
Kernel NAK dead originating NA 0 id of msg NA
message process process process being NAKed

dead
Kernel info dead originating NA 0 id of msg NA
message process process process being NAKed
dead

| Kernel kil originating | process NA 0 NA NA
message process process to kil
Kernel nit Main Main NA 0 NA NA
message complete Unit Unit
Kernel process Main Main NA length of NA process
message created Unit Unit process name

i name
Kernel network any any NA 0 NA NA
message failure process process

Table 1: Kernel Message Formats
CMU/SEI-89-TR-19 285

Message Message
Operation Tag Sender Receiver Timeout Length D Content
sync prepare to originating all other NA 1 NA 16#FF#
protocol sync processor processors
sync time is originating all other NA 8 NA current epoch
protocol now processor processors time
Table 2: Synchronization Message Formats
Message Message
Operation Tag Sender Receiver Timeout Length 1D Content
init master Master subordinate | NA 0 NA NA
protocol ready processor processor
init NCT subordinate | Master NA 4 NA number of
protocol count processor processor NCT entries
init NCT subordinate | Master NA size of an NA an NCT
pratocol entry processor processor NCT record record
nit go Master subordinate | NA 8 NA Current Epoch
protocol enclosed processor processor time
init go subordinate | Master NA 0 NA NA
protocol acknowledge | processor processor
Table 3: Initialization Message Formats
Message Message
Operation Tag Sender Recelver Timeout Length D Content
blind defined by Main tool NA See tool_ NA See tool
send user Unit process interface imerface
package package,
attribute definitions
Table 4: Tool Interface Message Formats
286 CMU/SEI-88-TR-19

in

- o=

.- l/-
N

Appendix C: Race Conditions

in the Kernel, two types of asynchronous actions exist that can disturt the execution of a

process:

1. Interrupts: where an external device takes control of the CPU away from the

currently executing process.

2. Process suspension: where the Kernel takes control of the CPU away from a
This activity is
either voluntary (via the invocation of a blocking primitive) or the result of an

process (according to the rules defined for the Scheduler).

interrupt changing the state of a higher priority process.

Given that asynchronous activities can occur, there area a number of critical data structures

that must be protected. These shared data structures are:
» Process Table (PTB)

» Context Save Area

« Schedule attributes

* Message queue

* Pending activities attributes
« Semaphore attributes

« Tool interface attributes

e interrupt Table (IT)
* Network Configuration Table (NCT)
e Timeslice Parameters (TSP)

This appendix examines each of these data structures and identifies the potential race

conditions and how each is resolved.

The assumptions upon which this analysis is based are:

1. The Kernel is reentrant, i.e., the Kernel, can suspend processes in the middle

of primitive invocation processing.
2. The following procedures are atomic:

o Time_keeper.insert_event

e Time_keeper.remove_event

» Scheduler.schedule

o Context_switcher.switch_processes
» Context_switcher.resume_process
e Exception_raiser.raise_exception

e Datagram_management.enqueue

e Datagram_management.dequeue

e Datagram_management.delete

CMU/SEI-89-TR-19

287

o Datagram_management.get_head

C.1. Process Table - Context Save Area

Situation: Interrupt causing a context switch while the context switcher is executing.

Resolution: Make context switch atomic.

C.2. Process Table - Schedule Attributes

Sltuation: Alarm and timeout expire for the same process at same instant
o 2 different priorities
o 2 different exceptions

Resolution: Alarm expiration has precedence.

Situation: Executing set _process_priority or set process_preemption when alarm expires
(but before the call to Schedule that updates these values).

Resolution: Propagation of the alarm exception terminates the primitive invocation with the
process having the priority specified by the set_alarm call.

Situation: Executing set_process_priority or set_process_preemption when a schedule
operation occurs (but before the call to Schedule that updates these values).

Resolution: The operation simply takes place when next the process gets scheduled. The
actual value updates still occur atomically.

C.3. Process Table - Message Queue
Situation: Executing receive_message when receive timeout expires

Resolution: Cancel timeout before beginning the message processing. This means that
once a message becomes available and a receive_message is started, it will finish without a
timeout interruption.

Situation: Updating PTB when an interrupt or process context switch occurs

Resolution: The only multi-component values that must be updated are the:
1. Scheduling attributes (priority, preemption, state)

e on write, the update is handled via the Scheduler which is an atomic
operation
e on read, these are simple values and can safely be read without locking

288 CMU/SEI-89-TR-19

ay I G A Ey am

- s

f '
\

,_.4.

.)

2. Message Queue
e on write, all modifications are handled via the atomic operations
enqueue, dequeue, get_head, and delete
* no simple reads are ever performed

Sltuation: Executing in an interrupt handler (i/h) when higher priority interrupt occurs
Resolutlon: Primitives and user code are reentrant

Situation: Executing receive_message when a "kill" message arrives for the receiving
process

Resolution:

e Process is immediately yanked from the Scheduler (via Remove_process) and
never completes the receive operation.

e The message queue is flushed, starting with the message that was being
processed at the time "kill" arrived. This can be accomplished because
get_head returns the message at the head of the queue without actually
removing it from the queue. Removal from the queue is done when the buffer
space is deallocated from the message queue and returned to the free list.

Sltuation: Executing die or kill (self) when a "kill" message arrives for the process
Resoiution: Same as above.

Situation: Executing send_message or send_message_and_wait when “kill" message
arrives for the sending process

Resoiution:
e Process is immediately yanked from the Scheduler and never completes the
send operation

e A CURRENT SEND BUFFER pointer is maintained in the process table. When a
"kill* oceurs, this buffer is also deallocated and returned to the free list.

» The incoming message queue is also purged (as above).
» The ACK/NAK to a dead process is ignored.

Situation: Executing send_message or send_message_and_wait when an alarm expires
for the sending process

Resolution: The send operation is terminated. The alarm processing section of the clock
interrupt handler Deallocates the CURRENT SEND BUFFER. No buffers are lost.

CMU/SEI-89-TR-19 289

C.4. Process Table - Pending Activities Attributes

Sltuation: Executing set_alarm when an alarm expires (race on the ALARM RESUMPTION
PRIORITY field)

Resolution: The alarm event is removed before modifications are made to the alarm-reiated
data structures.

Situation: Executing cancel_alarm when an alarm expires

Resolution: Propagation of the alarm exception terminates the primitive invocation with the
process having the priority specified by the set_alarm call (i.e., the alarm expiry has
precedence).

Situation: Executing any primitive when an alarm expires

Resolution: Propagation of the alarm exception terminates the primitive invocation with the
process having the priority specified by the set_alarm call.

NOTE:

1. When an alarm expires no post conditions are guaranteed for any Kernel
operation executing at that instant.

2. When an alarm expires during a receive_message, the message being
processed is still in the queue and is picked up by the next receive_message
invocation.

C.5. Process Table - Semaphores Attributes
Situation: Executing claim when preempted by a higher priority process
Resolution: Manipulation of semaphore wait queue is atomic.

Situation: Executing Release when preempted by a higher priority process

Resolution: Manipulation of semaphore wait queue is atomic.

C.6. Table - Tool Interface Attributes

Situation: Executing begin_collection when a tool interface message arrives
Resolution: Simple vaiue update (receiving process id). No locking needed.
Situation: Executing end_collection when a tool interface message arrives

Resolution: Simple value update (receiving process id). No locking needed.

290 CMU/SEI-89-TR-19

>
‘

C.7. Interrupt Table

Situation: Executing bind_interrupt_handler when an interrupt occurs (for the interrupt
being rebound)

Resolution: The interrupt being rebound must be explicitly disabled first.

C.8. Network Configuration Table

Sltuation: Executing aliocate_device_receiver when a message arrives from that device.
Resolution: Simple value update (receiving process id). No locking needed.

Sltuation: Message arrives from a non-Kernel device while the device receiver is going thru
die or kill processing

Resolution: The process is marked as dead in the first step of this processing, thus the
message from the non-Kernel device is thrown away without ever being queued.

C.9. Timeslice Parameters

Situation: Executing set_timeslice_quantum when a slice expires.
Resolution: The timeslice quantum is a simple value. No locking needed.

Situation: Executing set_timeslice_quantum when an interrupt occurs whose interrupt
handler executes set_timeslice_quantum.

Resolution: These calls serialize (simple write), with the last one to execute dictating the
new value.

Sltuation: Executing disable_time_slicing when a slice expires.
Resolution: Simple value update. No locking needed.

Situation: Executing disable_time_slicing when an interrupt occurs whose interrupt handler
executes disable_time_slicing.

Resolution: These calls serialize, with the last one to execute dictating the new value.

CMU/SEI-89-TR-19 291

Appendix D: 68020 Assembler Interface |

This appendix gives the assembler interface used in the MC68020 with the current compiler
and version. Full details of the compiler and version conventions are found in [TeleSoft 88],
Chapter 6.

D.1. Linkage

Linkage is effected by the pragmas /nterface and Linkname [TSUG 6.12.1}):
procedure Low_Level Action;

pragma Interface (Assambly, Low_Level_ Action);
pragma Linkname (Low_lLevel_ Action, "PSN_low_level_ action");

The linkname always begins with the package short name (PSN); these prefixes are unique
and do not clash with any compiler-generated names. The linkname continues with the
name of the subprogram; the total length never exceeds the maximum significant length of a
linkname, so this convention also ensures there are no name clashes for non-overloaded
subprograms.

When two or more Ada specifications” with the same expanded name - overloaded
subprograms ~ are implemented in assembler, the exported Ada names are generated by
renames declarations, and the true subprograms have names made unique by appending a
suffix.

Linknames are not case sensitive.

Special rules had to be followed for operators, since the compiler does not permit the
pragma INTERFACE to be applied to operator designators. The function was given a
conventional name and then renamed as the operator:

£unction plus (left,right : T) return T;
pragma Interface(Assembly,plus);

function "+" (left,right : T) return T renameas plus:;

Within the assembler body, the linkname is generated by a standard XDEF directive:
XDEF PSN_low_lavel_ action

The assembler routines must be presented to the Ada library as implementations of
package or subprogram bodies. This is done by the /Import function of the Ada system
[TSUG 5.1], which must be invoked for each assembler unit after it has been assembled and
before any program requiring it can be linked. A file may contain either Ada code or
assembler code, but not both. DARK project naming conventions require that a file
containing assembler code be named exactly as it would be if it were in Ada, but with the
additional suffix _machine_code. An Ada specification is implemented, therefore, by at most
one Ada body and one assembler code body.

292 CMU/SEI-89-TR-19

\
]

-_

D.2. Program and Data Sections

No use was made of program or data sections; the target configuration makes no distinction
between code and data.

The code as written is position independent.

0.3. Data Representation

The data representations common to both Ada and assembler levels are as specified in
Appendix E.

There were two difficulties with these definitions:

e The compiler does not allocate single bytes for single byte-sized objects. It
allocates at least a (2-byte) word. However, it can allocate bytes for byte-sized
record components, and this is all that the Kernel requires.

» The compiler numbers the bits in an object from left to right [TSUG 6.8]. This is
contrary to the target machine conventions, which are observed by all the
hardware documentation. The solution was to name the individual bits in a byte
in accordance with the hardware convention, so bit0 is the least significant bit,
and enforce compiler compliance by a representation clause.

D.4. Access to Ada Objects from Assembly Code

Not required.

D.5. Access to Assembler Objects from Ada Code

Not required.

D.6. Procedural Interface

The procedural interface uses the following protocol [TSUG 6.10, 6.12}:

D.6.1. Entry and Exit Protocol

e Call is by a JSR instruction, and on entry to the subprogram, the hardware
stack pointer (A7) points to the return address. Above this are the parameters,
in left-to-right order, so the last parameter is closest to A7. The caller therefore
must push the parameters onto the stack before the call.

¢ Exit is by an RTS, similarly; the caller resets the stack to reclaim the parameter
space.

CMU/SEI-89-TR-19 293

D.6.2. Register Usage

s The called routine must save and restore any registers it uses except DO and
D1.

o |t must return a simple (see D.6.4.1) function result in DO.

o If it is returning a function result by reference, it must return the address of the
result in DO.

D.6.3. Stack Manipulation

¢ The called routine must at all times maintain in A7 a valid hardware stack
pointer. :

 The called routine may claim local storage by lowering the stack pointer; it must
restore the old value before exit.

e The called routine might'2 have to build an Ada stack frame. This is done by
issuing a LINK instruction at the beginning and a corresponding UNLK
instruction at the end.

D.6.4. Parameter Passing
The parameter passing conventions are as follows [TSUG 6.10.2}:

D.6.4.1. Mode of Transmission

e All parameters smaller than a (2-byte) word are widened to 2 bytes and passed
by value. With the current compiler, all such parameters must be of a scalar
type.

e Parameters of simple (scalar and access) types and 4 bytes wide or smaller are
passed by value. ”

e Parameters larger than 4 bytes, and all parameters of structured types, are
passed by simple reference. This reference is the machine address of the
lowest-numbered storage unit, and is a 4-byte value.

D.6.4.2. Manner and Order of Transmission
e Parameters are pushed on the hardware (A7) stack in direct order. That is, the
leftmost parameter is pushed on the stack first, and the rightmost last.

e A parameter passed by reference passes the address of the actual as an In
parameter.

D.6.4.3. Accessing Parameters and Returning Function Resuits

e Value In parameters pass the actual value. Value out parameters pass in
binary zero and expect the out value to overwrite it. Value In out parameters
pass in the actual value and expect the new value to overwrite it.

e Function results not larger than 4 bytes are returned in register DO.

20nty needed if an exception may have to propagate through the assembly language routine.

204 CMU/SEiI-89-TR-19

G Gy Ny By Gy 3 e

e Function resuits larger than 4 bytes are returned in a hidden out parameter
whose address is passed as the final parameter to the function, after the last
true parameter. In addition, this address must aiso be returned in DO.

e Although some Ada types require hidden parameters to be passed along with
their actual values, no such types are used by any assembler subprogram.

Note that, since parameters are pushed on the stack left-to-right, the offset from the stack
pointer of any given parameter (the first, say) depends on the number of parameters and

their types. It is essential, therefore, that the Ada and assembler sides of this interface
correspond exactly, otherwise serious execution-time errors result.

D.6.5. Example

The following example is taken from one of the Kernel modules. It is an implementation of
the function plus:

function "+" (Left,Right : Kernel Time) return Kernel Time;

where the type Kemel_time is defined as a record with two components, each a 4-byte
integer. The function is specified in the module generic_kemnel_time, and so its assembler
name begins with the package short name GKT.

HIGE EQU 4
I0W EQU 0
XDEF GKT_add [1]
GKT_add:
LINK A6, #0 [2]
MOVEM.L D2/A0, - (A7) [3]
MOVEA.L 24 (A7) ,A0 [4]

MOVE.L LOW(AO0),DO
MOVE.L HIGH(AO),D1
MOVEA.L 20 (A7),A0 [5]
ADD.L LOW(AO),DO
MOVE .L HIGH(AO),D2

ADDX.L D2,D1 [6]
TRAPV { 7]
MOVEA.L 16 (A7),A0 [8]

MOVE.L DO, LOW(A0)
MOVE.L D1,HIGH(A0)

MOVE.L AO,DO [9]
MOVEM.L (A7)+,D2/A0 [(10]
UNLK A6 [11]
RTS [12]

The relevant instructions are annotated thus:

[1]:The linkage directive makes the name of the function accessible.
[2):An Ada stack frame is built by a LINK instruction.
[3]:Registers used are saved (except for DO and D1).

[4]):The first parameter is passed by address and is pushed first onto the stack. It
is therefore farthest away from A7.

CMU/SEI-89-TR-19 295

[5]):The second parameter is likewise passed by reference and pushed next.

[6]: The two Kernel_time values are added. This instruction may cause a numeric
overtlow.

[7):Accordingly, the TRAPV is necessary to detect any overflow and trap to the
Ada runtime, which will raise the exception numeric_error.

[8]:The address of the result is passed as a hidden final parameter.

[9]:As well as storing the result there, the routine must return the same address in
DO.

[10]):The saved registers are restored.
[11]):The Ada stack frame is unlinked.
(12]:Finally, the function returns to the caller.

D.7. Exceptions

D.7.1. Raising Exceptions

The assembler code never raises a user-defined exception. Where appropriate, it raises an
intrinsic exception by executing a hardware TRAP instruction, which traps to the Ada
runtime.

D.7.2. Exception Propagation
The Ada runtime propagates exceptions upwards through stack frames, using the saved
information in each stack frame to find each caller.

For this to work, every assembier body that can raise an exception, and every body through
which an exception might propagate, must build a valid Ada stack frame, in the manner
described above. The assembler body given in the example is a case in point: the
exception numeric_error might have to be propagated through it, and so it must build a valid
Ada stack frame.

In addition, the Ada runtime constructs a backtrace of the call stack for diagnostic purposes.
The current Ada runtime tries to generate a complete backtrace before searching for an
exception handler, but unfortunately the test for the root of the call graph — the Ada
outermost level — does not function correctly when the root is a Kernel process. The
backtrace has therefore been disabled by setting an Ada runtime tailoring parameter.

D.7.3. Guarded Regions

The model used by the compiler relies on static data structures — code maps — to identify
guarded regions. The assumption made by the Ada runtime is that if the code map is
missing then no guarded regions exist in that code. Accordingly, the assembler bodies
contain no special code or data concerned with either guarded regions or their absence.

296 CMU/SEI-89-TR-19

R Gk R TN aE Ny am o

Appendix E: 68020 Tailoring

This appendix contains the hardware tailoring for the MC68020 with the current compiler
and version.

E.1. Sizes of Data Types
bits_per byte : constant := 8;
byte : constant := 1;
wozd : constant := 2;

longword : constant := 4;

E.2. Untyped Storage
type hw_byte is range 0..255;

type hw_bits8 is record
bit7 : Boolean:
bit6 : Boolean:;
bit5 : Boolean:;
bitd : Boolean;
bit3 : Boolean:
bit2 : Boolean:;
bitl : Boolean:;
bit0 : Boolean:
end record;

for hw_bits8 use recoxd

R e S N ER N G W SE A W aGm W e

bit7 at 0 range 0..0:;
bit6 at 0 range 1..1;
bit5 at 0 range 2..2;
bit4 at 0 range 3..3;
bit3 at 0 range 4..4;
bit2 at 0 range 5..5;
bitl at 0 range 6..6;
bit0 at 0 range 7..7;

end record;

function to_hw bits8 is
new unchecked |_conversion (hw_byte, hw _bits8);

type hw_byte ptr is access hw_byte:
type hw_bits8 ptr is access hw_bits8:

function to_hw_byte ptxr

"CMU/SEI-89-TR-19 207

is new uncheckcd_convc:sion(ly-tm.add:c:n,hw_byto _ptzr);

function to_hw_bits8_ ptr
is new unchecked conversion(system.address hw_bits8 ptr):

function to_hw bits8 ptr
is new unchecked conversion(hw_byte ptr hw bits8 ptr):

E.3. Integer Types

type hw_integer is range -32_768 .. 32_767:
for hw_integer’size use 2 * bits_per_byte:

type hw_short_integer is range -128 .. 127;
for hw_short_integer’size use 1 * bits per byte;

type hw_long integer is
range -2_147_483_648 .. 2_147_483_647;
for hw_long_integer’'size use 4 * bits_per_ byte;

type hw_natural is range 0 .. 32_767;
for hw_natural’size use 2 * bits_per byte:;

type hw_positive is range 1 .. 32 _767;
for hw_positive’size use 2 * bits_per_byte:;

A W T @ e Am U e aE an

type hw_long natural is range 0 .. 2 _147_483_647;
for hw_long natural’size use 4 * bits_per_byte;

type hw_long positive is range 1 .. 2_147_483_647;
for hw_long_positive’size use 4 * bits_per_ byte;

am us

E.4. Duration

type hw_duration is

new duration range -86_400.0 .. +86_400.0;
for hw_duration’small use 2.0 ** (-14);
for hw_duration’size use 4 * bits_per byte;

E.5. Machine Addresses

298 CMU/SEI-89-TR-19

T Ny UE O e an T @n

- =

G G WME BN GO T am e

type hw_address is new system.address:

function to_hw_address is
new unchecked_conversion (hw_long integer, hw_address):

null hw_address : constant hw_address
:= to_hw_address (hw_long_integex’ (0)):;

E.6. Strings

type hw_string is new string;

CMU/SEI-89-TR-19

299

Appendix F: Procedure to Requirement Mapping

A few notes about the requirements mapping tables:

» Only procedures and functions that appear at the package specification level
occur in the table. No instantiations are included (only the generic source).

e Top-level package specifications occur only when there are internal objects that
fulfill requirements.

¢ Overloaded names appear multiple times.
e The ordering of procedures and entries follows the order of the entries in the

specification.
Package/Procedure to Requirements Mapping
Requirement Package/Procedure
5.1 kernel_exceptions
exception_raiser.raise_exception
exception_raiser
512 all Kernel primitives

300

CMU/SEI-89-TR-19

G Gk VR TR AR By Em

N . \
- - - - -‘ - - - - _"

=

Package/Procedure to Requirements Mapping

Requirement

Package/Procedure

513

time_keeper.remove_event
time_keeper.insert_event
time_keeper.initialize
timer_controller.cancel_timer
timer_controller.set_timer
timer_controller.initialize

scc_porta.set

scc_porta.send

scc_porta.put_byte

scc_porta.initialize

scc_porta.get_byte

scc_porta.get
scc_porta.enable_tx_interrupts
scc_porta.ensable_rx_interrupts
scc_porta.disabie_tx_interrupts
scc_porta.disable__rx_interrupts
scc_porta.deallocate

scc_porta.allocate
parallel_io_controller.receive_packet
paraliel_io_controller.send_packet
parallel_io_controller.acknowiedge_xmit_interrupt
parallel_io_controller.acknowledge_recv_interrupt
parallel_io_controller.xmit_buffer_empty
parallel_io_controller.recv_bufter_full
parallel_io_controller.disable_xmit_interrupt;
paraliel_io_contro'ler.disable_recv_interrupt;
paraliel_io_controiler.enable_xmit_interrupt;
parallel_io_~ontrolier.enable_recv_interrupt;
parallel_io_controller.initialize_xmit;
parallel_io_controller.initialize_recv;
nproc.main_unit

mz8305_definitions

mvme 133A_definitions

memory_addresses
low_level_interrupt_management.initialize
low_level_interrupt_management.bind_siow_interrupt
low_level_interrupt_management.bind_fast_interrupt
low_level_hardware.reset_interrupt_priority
low_level_hardware.set_interrupt_priority
jow_level_hardware.v
low_level_hardware.p
low_level_hardware.is_nproc
low_level_hardware.is_kproc
low_level_hardware.my_network_address
jow_level_hardware
generic_network_globals
context_switcher_globals
clock.adjust_epoch_time
clock.adjust_elapsed_time

clock.get_time

clock.stop_clock

clock.start_clock

bus_io.initialize

CMU/SEI-89-TR-19

301

Package/Procedure to Requirements Mapping

Requirement

Package/Procedure

514

time_keeper_globals
time_keeper.remove_event
time_keeper.insert_event
time_keeper.initialize
timer_controller.cancel_timer
timer_controller.set_timer
timer_controller.initialize
tc_body_machine_code

scheduler.initialize

scc_porta.set

scc_porta.send

scc_porta.put_byte

scc_porta.initialize

scc_porta.get_byte

scc_porta.get
scc_porta.enable__tx_interrupts
scc_porta.ensable_rx_interrupts
scc_porta.disable_tx_interrupts
scc_porta.disable_rx_interrupts
scc_porta.deallocate

scc_porta.allocate
parallel_io_controller.receive_packet
parallel_io_controller.send_packet
parallel_io_controller.acknowledge_xmit_interrupt
parallel_io_controller.acknowledge_recv_interrupt
parallel_io_controlier.xmit_buffer_empty
parallel_io_controller.recv_buffer_full
parallel_io_controiler.disable_xmit_interrupt;
parallel_io_controlier.disable_recv_interrupt;
parallel_io_controlier.enable_xmit_interrupt;
parallel_io_controller.enable_recv_interrupt;
paraliel_io_controlier.initialize_xmit;
parallel_io_controller.initialize_recv;
nproc.main_unit

mz8305_definitions

mvme133A_definitions

memory_addresses
low_level_storage_manager.allocate
low_level_interrupt_management.initialize
low_level_interrupt_management.bind_siow_interrupt
low_level_interrupt_management.bind_fast _interrupt
low_level_hardware.reset_interrupt_priority
low_fevel_hardware.set_interrupt_priority
low_level_hardware.v
low_level_hardware.p
low_level_hardware.is_nproc
low_level_hardware.is_kproc
low_level_hardware.my_network_address
low_level_hardware

low_level_clock

302

CMU/SEI-89-TR-19

1

Package/Procedure to Requirements Mapping

Requirement

Package/Procedure

5.1.4 (continued)

lipe_body. nitialize_Process_State
llim_body_machine_code

Ilh_body_machine_code

llcs_body_machine_code
kim_body_machine_code
kernel_exceptions.to_string
ipi_body_machine_code
interprocessor_interrupts.generate_kn_interrupt
interprocessor_interrupts.enable_kn_interrupt
interprocessor_interrupts
internal_process_management.create_kernel_processes
internal_process_management.create_internal_process
internal_process_management.get_null_process_number
internal_process_management.get_next_process_number
hardware_interface.to_hw_bits8_ptr
hardware_interface.to_hw_bits8_ptr
hardware_interface.to_hw_byte ptr
hardware_interface.to_hw_bits8
hardware_interface

gkt_body_machine_code
generic_storage_manager.deallocate
generic_storage_manager.aliocate
generic_storage_manager.initialize
generic_queue_manager.remove_next
generic_queue_manager.get_next
generic_queue_manager.end_of _queue
generic_gqueue_manager.initialize_backward_iterat
generic_gqueue_manager.initialize_iterator
generic_queue_manager.empty
generic_gqueue_manager.get_element
generic_queue_manager.get_head
generic_queue_manager.remove
generic_queue_manager.dequeue
generic_gqueue_manager.enqueue
gengric_queue_manager.enqueue
generic_queue_manager.delete
generic_queue_manager.delete
generic_queue_manager.create
generic_process_table.size_of_process_table
generic_process_table.locate_process
generic_process_table.initialize_process_table
generic_process_table.destroy_process_informatio
generic_process_table.create_process_information
generic_process_table."<="
generic_process_table."<="
generic_network_globais
generic_communication_globals
datagram_management.free_queue_status
datagram_management.nproc_initialize
datagram_management.kproc_initialize

CMU/SEI-89-TR-19

303

Package/Procedure to Requirements Mapping

Requirement

Package/Procedure

5.1.4 (continued)

datagram_management.new_queue
datagram_management.get_first
datagram_management.free_dg
datagram_management.enqueue
datagram_management.dequeue
datagram_management.delete
datagram_management.alloc_dg
datagram_globals
dark_text_io.to_hex

dark_text_io
context_switcher_globals
context_save_area
clock.adjust_epoch_time
clack.adjust_elapsed_time
clock.get_time

clock.stop_clock
clock.start_clock

bus_io.initialize

515

516

network_configuration
generic_schedule_types
generic_process_table
generic_process_managers
generic_network_configuration

517

tool_intertace_output
time_keeper.remove_event
time_keeper.insert_event
time_keeper.initialize
timer_controller.cancel_timer
timer_controller.set_timer
timer_controlier.initialize
generic_communication_globals
clock.adjust_epoch_time
clock.adjust_elapsed_time
clock.get_time
clock.stop_clock
ciock.start_clock

generic_time_management
generic_timeslice_management
generic_semaphore_management
generic_schedule_types
generic_process_managers
generic_process_attribute_readers
generic_process_attribute_modifiers
generic_processor_management
generic_network_globals
generic_alarm_management

CMU/SEI-89-TR-19

Package/Procedure to Requirements Mapping

Requirement

Package/Procedure

524

scheduler.schedule_ih

scheduler.schedule
scheduler.remove_process
scheduier.insert_process

scc_porta.set

scc_porta.send

scc_porta.put_byte

scc_porta.initialize

scc_porta.get_byte

scc_porta.get
scc_porta.enable_tx_interrupts
scc_porta.ensable_rx_interrupts
scc_porta.disable_tx_interrupts
scc_porta.disable_rx_interrupts
scc_porta.deallocate

scc_porta.ailocate
process_index_table.get_process_index
process_index_table.get_process_identifier
internal_process_management.get_null_process_number
internal_process_management.get_next_process_number
generic_storage_manager.deallocate
generic_storage_manager.aliocate
generic_queue_manager.remove_next
generic_queue_manager.get_next
generic_queue_manager.end_of_queue
generic_queue_manager.initialize_backward_iterat
generic_queue_manager.initialize_iterator
generic_queue_manager.empty
generic_queue_manager.get_element
generic_queue_manager.get_head
generic_queue_manager.remove
generic_queue_manager.dequeue
generic_queue_manager.enqueue
generic_queue_manager.enqueue
generic_queue_manager.delete
generic_queue_manager.delete

CMU/SEI-89-TR-19

305

Package/Procedure to Requirements Mapping

Requirement Package/Procedure
6.1.1 generic_processor_management.initialize_master_processor
6.1.2 generic_processor_management.initialize_subordinate_processor
6.1.3 generic_processor_management.initialize_subordinate_processor
generic_processor_management.initialize_master_processor
6.1.4 generic_processor_management.initialize_subordinate_processor
generic_processor_management.initialize_master_processor
bus_io.multi_send
6.1.5 generic_processor_management.initialize_master_processor
6.1.6 generic_time_management
generic_processor_management
generic_network__configuration
6.1.7 generic_processor_management
6.1.8 generic_processor_management
6.1.9 generic_process_managers
generic_process_attribute_modifiers
generic_communication_management
bus_ijo.multi_send
6.1.10 network_configuration
generic_network_configuration
306 CMU/SEI-89-TR-19

Package/Procedure to Requirements Mapping

Requirement

Package/Procedure

6.1.11

process_index_table.clear_process_index
process_index_table.set_process_index
process_index_table.get_process_index
process_index_table.get_process_identifier
paraliel_io_controller.receive_packet
parallel_io_controlier.send_packet
parallel_io_controller.acknowledge_xmit_interrupt
parallel_io_controller.acknowledge_recv_interrupt
parallel_io_controlier.xmit_buffer_empty
paraliei_io_controlier.recv_bufter_full
parallel_io_controller.disable_xmit_interrupt;
parallel_io_controller.disable_recv_interrupt;
parallel_io_controlier.enable_xmit_interrupt;
parallel_io_controller.enable_recv_interrupt;
parallel_io_controller.initialize_xmit;
parallel_io_controlier.initialize_recv;
nproc.main_unit
network_configuration.get_processor_id
network_configuration

mzB8305_definitions

mvme133A_definitions

memory_addresses
low_level_hardware.reset_interrupt_priority
low_level_hardware.set_interrupt_priority
low_level_hardware.v

iow_ievel_hardware.p
low_level_hardware.is_nproc
low_level_hardware.is_kproc
low_level_hardware.my_network_address
fow_level_hardware

lih_body_machine_code
ipi_body_machine_code
interprocessor_interrupts.generate_kn_interrupt
interprocessor_interrupts.enable_kn_interrupt
interprocessor_interrupts
intemal_process_management.create_kernel_processes
internal_process_management.create_internal_process
generic_processor_management
generic_network_globals
generic_network_configuration.get_processor_id
generic_network_configuration
generic_communication_management
datagram_management.free_queue_status
datagram_management.nproc_initialize
datagram_management.kproc_initialize
datagram_management.new_queue
datagram_management.get_first
datagram_management.free_dg
datagram_management.enqueue
datagram_rnanagement.dequeue
datagram_management.delete
datagram_management.ailoc_dg
datagram_globals

CMU/SEI-89-TR-18

307

Package/Procedure to Requirements Mapping

Requirement Package/Procedure

6.2.1 time_keeper.initialize

timer_controlier.initialize

scc_porta.initialize
process_index_table.ciear_process_index
process_index_table.set_process_index
network_configuration.get_processor_id
network_configuration
internal_process_management.create_kernel_processes
internal_process_management.create_internal_process
generic_storage_manager.initialize
generic_queue_manager.create
generic_process_managers.create_process
generic_process_managers.declare_process
generic_process_managers.declare_process
generic_processor_management.initialization_complete
generic_processor_management.initialize_subordinate_processor
generic_processor_management.initialize_master_processor
generic_network_configuration.get_processor_id
generic_network_configuration

clock.start_clock

bus_io.initialize

6.2.2 generic_processor_management.initialize_master_processor

308 CMU/SEI-89-TR-19

L----------

Package/Procedure to Requirements Mapping

Requirement

Package/Procedure

7.1

generic_process_managers
generic_process_attribute_modifiers

7.1.2

generic_process_managers
generic_process_attribute_modifiers

7.1.3

generic_process_managers.declare_process
generic_process_managers.declare_process

7.1.4

process_encapsulation.dummy_call_frame
low_level_process_encapsuiation.indirect_call
low_level_process_encapsulation.initialize_process_state
low_level_context_switcher.hw_switch_processes
low_level_context_switcher.hw_restore_process
iow_level_context_switcher.hw_save_context
generic_process_table
generic_process_managers.create_process
context_switcher.switch_processes
context_switcher.restore_process
context_switcher.save_context

jow_level_process_encapsulation.indirect_call
generic_process_managers.create_process

generic_process_table
generic_process_managers.create_process

generic_process_table
generic_process_managers.create_process

generic_process_managers.create_process
generic_process_managers

generic_process_table
generic_process_managers.create_process

7.1.10

generic_process_managers.create_process

7111

requirement deleted

7.1.12

process_encapsulation
generic_process_managers.create_process

7.1.13

generic_process_managers
generic_process_attribute_modifiers

71.14

network_configuration
generic_network_configuration

generic_communication_management.allocate_device_receiver

7.1.15

generic_processor_management.initialization_complete

7.1.16

network_configuration
generic_processor_management.initialization_complete
generic_network_configuration

7.1.17

generic_processor_management.initialization_complete

CMU/SEI-88-TR-19

309

Package/Procedure to Requirements Mapping

Requirement

il

Package/Procedure

7.1.18

generic_process_attribute_modifiers.kill
generic_process_attribute_moditiers.die

7.1.19

requirement deleted

7.1.20

generic_process_attribute_modifiers.kill

7.1.21

generic_process_table

generic_process_attribute_modifiers.die
generic_communication_management.send_message_and_wait
generic_communication_management.send_message_and_wait
generic_communication_management.send_message_and_wait
generic_communication_management.send_message
bus_io.send_kernel_datagram

bus_io.send_process_datagram

7.1.22

requirement deleted

7.1.238

generic_process_attribute_readers.who_am_i

7.1.24

generic_process_attribute_readers.name_of

7.1.25

generic_process_managers.create_process
generic_process_attribute_readers.name_of
generic_process_attribute_modifiers.kill
generic_process_attribute_modifiers.die
generic_processor_management.initialization_compiete
generic_communication_management.send_message_and_wait
generic_communication_management.send_message_and_wait
generic_communication_management.send_message_and_wait
bus_io.send_kernel_datagram

bus_io.send_process_datagram

7.1.26

generic_process_managers.create_process
generic_process_attribute_readers.name_of
generic_process_attribute_modifiers.kill
generic_process_attribute_modifiers.die
generic_processor_management.initialization_complete
generic_communication_management.send_message_and_wait
generic_communication_management.send_message_and_wait
generic_communication_management.send_message_and_wait
bus_io.send_kemel_datagram

bus_io.send_process_datagram

7.1.27

generic_process_table
generic_process_managers.create_process

7.2.1

generic_process_managers.create_process

7.2.2

generic_process_attribute_modifiers.kill
generic_process_attribute_modifiers.die

723

requirement deleted

7.24

generic_communication_management.allocate_device_receiver

725

generic_process_managers.create_process

310

CMU/SEI-89-TR-19

Package/Procedure to Requirements Mapping

Requirement

Package/Procedure

7.2.6

generic_process_managers.create_process

CMU/SEI-89-TR-19

31

Package/Procedure to Requirements Mapping

Requirement Package/Procedure

8.1.1 generic_semaphore_management
generic_process_table

8.1.2 generic_semaphore_management
generic_process_table

8.1.3 generic_semaphore_management.claim
generic_semaphore_management.claim
generic_semaphore_management.claim
generic_process_table

8.14 generic_semaphore_rmanagement.claim
generic_semaphore_management.claim
generic_semaphore_management.claim
generic_process_table

8.1.5 time_keeper.remove_event
time_keeper.insert_event
timer_controller.cancei_timer
timer_controlier.set_timer
generic_semaphore_management.claim
generic_process_table

8.1.6 time_keeper.remove_event
time_keeper.insert_event
timer_controller.cancel_timer
timer_controller.set_timer
generic_semaphore_management.ciaim
generic_process_table

8.1.7 generic_semaphore_management.claim
generic_semaphore_management.claim
generic_semaphore_management.ciaim

8.1.8 generic_semaphore_management.claim
generic_semaphore_management.claim
generic_semaphore_management.claim

8.1.9 generic_semaphore_management.claim
generic_semaphore_management.ciaim
generic_semaphore_management.claim
generic_process_table

8.1.10 generic_semaphore_management.release
generic_process_table

8.1.11 generic_semaphore_management.release
generic_process_table

8.1.12 time_keeper
generic_process_attribute _modifiers.kill
generic_process_attribute_modifiers.die

8.1.13 generic_semaphore_management.release

8.1.14 generic_semaphore_management

312 CMU/SEI-88-TR-19

Package/Procedure to Requirements Mapping

Requirement Package/Procedure

8.1.15 generic_semaphore_management.release

8.1.16 generic_semaphore_management.claim
generic_semaphore_management.claim
generic_semaphore_management.claim
generic_process_table

8.2.1 generic_semaphore_management
generic_process_table

8.2.2 generic_semaphore_management.claim
generic_semaphore_management.claim
generic_semaphore_management.claim

8.2.3 generic_semaphore_management.release

CMU/SEI-89-TR-19 313

Package/Procedure to Requirements Mapping

i Requirement

Package/Procedure

9.1.1

generic_process_managers.create_process

g.1.2

generic_schedute_types
generic_process_managers.create_process

9.1.3

generic_timeslice_management
generic_schedule_types

9.14

generic_timeslice_management
generic_schedule_types

9.1.5

scheduler.insert_process
generic_timeslice_management
generic_schedule_types

scheduler.schedule

generic_semaphore_management.claim
generic_semaphore_management.claim
generic_semaphore_management.claim
generic_process_attribute_modifiers.wait
generic_process_attribute_modifiers. wait
generic_process_attribute_modifiers.set_process_priority
generic_communication_management.receive_message
generic_communication_management.receive_message
generic_communication_management.receive_message
generic_communication_management.send_message_and_wait
generic_communication_management.send_message_and_wait
generic_communication_management.send_message_and_wait
generic_alarm_management.set_alarm

9.1.7

generic_process_table
generic_process_managers.create_process

scheduler.schedule

generic_semaphore_management.claim
generic_semaphore_management.ciaim
generic_semaphore_management.claim

generic_process_table
generic_process_attribute_modifiers.wait
generic_process_attribute_modifiers.wait
generic_process_attribute_modifiers.set_process_priority
generic_communication_management.receive_message
generic_communication_management.receive_message
generic_communication_management.receive_message
generic_communication_management.send_message_and_wait
generic_communication_management.send_message_and_wait
generic_communication_management.send_message_and_wait
generic_alarm_management.set_alarm

9.1.9

generic_process_table
generic_process_attribute_readers.get_process_priority

9.1.10

generic_timeslice_management
generic_schedule_types

314

CMU/SEI-89-TR-19

Package/Procedure to Requirements Mapping

Requirement

Package/Procedure

9.1.11

generic_process_table
generic_process_managers.create_process

9.1.12

scheduler.schedule
generic_process_table

generic_process_attribute_modifiers.set_process_preemption

9.1.13

generic_process_table

generic_process_attribute_readers.get_process_preemption

9.1.14

generic_process_attribute_modifiers. wait
generic_process_attribute_modifiers. wait

9.1.15

time_keeper.remove_event
time_keeper.insert_event
timer_controller.cancel_timer
timer_controller.set_timer
generic_process_table
generic_process_attribute_modifiers.wait

9.1.16

time_keeper.remove_event
time_keeper.insert_event
timer_controller.cancel_timer
timer_controller.set_timer
generic_process_table -
generic_process_attribute_maodifiers.wait

9.1.17

time_keeper.remove_event
time_keeper.insert_event
timer_controiler.cancel_timer
timer_controlier.set_timer
generic_process_attribute_modifiers. wait
generic_process_attribute_modifiers.wait

9.1.18

timeslice_parameters
generic_timeslice_management.set_timeslice

9.1.19

time_keeper.remove_event
time_keeper.insert_event

timeslice_parameters

timer_controller.cancel_timer
timer_controller.set_timer
generic_timeslice_management.enable_time_slicing
generic_process_table

9.1.20

time_keeper.remove_event
time_keeper.insert_event

timeslice_parameters

timer_controller.cancel_timer
timer_controller.set_timer
generic_timeslice_management.disable_time_slicing
generic_process_table

9.1.21

timeslice_parameters
generic_timeslice_management

CMU/SEI-89-TR-19

315

! Package/Procedure to Requirements Mapping
Requirement Package/Procedure

9.1.22 generic_process_attribute_modifiers.wait
generic_process_attribute_modifiers.wait
generic_process_attribute_modifiers.set_process_priority
generic_process_attribute_modifiers.set_process_preemption
generic_communication_management.receive_message
generic_communication_management.receive_message
generic_communication_management.receive_message
generic_communication_management.send_message_and_wait
generic_communication_management.send_message_and_wait
generic_communication_management.send_message_and_wait
generic_alarm_management.cancel_alarm
generic_alarm_management.set_alarm

9.1.23 scheduler.schedule_ih
scheduler.schedule
scheduler.remove_process
scheduler.insert_process
generic_schedule_types
generic_process_table

9.1.24 scheduler.schedule_ih
scheduler.schedule
generic_timeslice_management

9.1.25 scheduler.schedule_ih
scheduler.schedule

9.1.26 scheduler
generic_timeslice_management

9.1.27 scheduler.schedule

9.1.28 scheduler

9.1.29 generic_process_table

generic_process_attribute_modifiers.wait
generic_process_attribute_modifiers. wait

8.2.1 generic_process_attribute_modifiers.set_process_priority
9.2.2 generic_process_attribute_modifiers.set_process_preemption
9.2.3 generic_process_attribute_modifiers.wait

generic_process_attribute_modifiers.wait
context_switcher.save_context

924 scheduler.schedule_ih
scheduler.schedule
generic_timeslice_management
context_switcher.restore_process

9.25 generic_timeslice_management.disable_time_slicing
generic_timeslice_management.enable_time_slicing

316 CMU/SEI-89-TR-19

B

Package/Procedure to Requirements Mapping

Requirement

Package/Procedure

9.2.6

scheduler.schedule_ih
scheduler.schedule
generic_timeslice_management
context_switcher.switch_processes

9.2.7 scheduler.schedule_ih
scheduler.schedule
generic_timeslice_management
CMU/SE!-89-TR-19 317

Package/Procedure to Requirements Mapping

Requirement

Package/Procedure

10.1.1

intemal_process_management.get_null_process_number
intemal_process_management.get_next_process_number
generic_process_manugers.declare_process
generic_process_managers.declare_process
generic_process_attribute_readers.name_of

10.1.2

generic_process_table
generic_communication_management.send_message_and_wait
generic_communication_management.send_message_and_wait
generic_communication_management.send_message_and_wait
generic_communication_management.send_message

10.1.3

generic_process_table

generic_communication_management.send_message_and_wait
generic_communication_management.send_message_and_wait
generic_communication_management.send_message_and_wait

10.1.4

generic_communication_management.send_message_and_wait
generic_communication_management.send_message_and_wait
generic_communication_management.send_message_and_wait

10.1.5

generic_communication_management.send_message_and_wait
generic_communication_management.send_message_and_wait
generic_communication_management.send_message_and_wait
generic_communication_management.send_message

10.1.6

process_index_table.clear_process_index
process_index_table.set_process_index
process_index_table.get_process_index
process_index_table.get_process_identifier
network_configuration.get_processor_id

network_configuration
generic_process_managers.declare_process
generic_process_managers.declare_process
generic_network_globals
generic_network_configuration.get_processor_id
generic_network_configuration
generic_communication_management.send_message_and_wait
generic_communication_management.send_message_and_wait
generic_communication_management.send_message_and_wait
generic_communication_management.send_message
bus_io.send_kernel_datagram

bus_io.send_process_datagram

10.1.7

time_keeper.remove_event

time_keeper.insert_event

timer_controller.cancel_timer

timer_controller.set_timer

generic_process_table
generic_communication_management.send_message_and_wait

318

CMU/SEI-89-TR-19

Package/Procedure to Requirements Mapping

Requirement

Package/Procedure

10.1.8

time_keeper.remove_event

time_keeper.insert_event

timer_controlier.cancei_timer

timer_controlier.set_timer

generic_process_table
generic_communication_management.send_message_and_wait

10.1.9

generic_communication_management.send_message_and_wait
generic_communication_management.send_message_and_wait

10.1.10

generic_communication_management.send_message_and_wait
generic_communication_management.send_message_and_wait
generic_communication_management.send_message_and_wait

10.1.11

generic_communication_management.send_message_and_wait
generic_communication_management.send_message_and_wait
generic_communication_management.send_message_and_wait

10.1.12

generic_process_tabie

generic_communication_management.receive_message
generic_communication_management.receive_message
generic_communication_management.receive_message

10.1.13

generic_communication_management.receive_message
generic_communication_management.receive_message
generic_communication_management.receive_message

10.1.14

generic_communication_management.receive_message
generic_communication_management.receive_message
generic_communication_management.receive_message

10.1.15

process_index_table.clear_process_index
process_index_table.set_process_index
process_index_table.get_process_index
process_index_table.get_process_identifier
network_configuration.get_processor_id
network_configuration
generic_process_managers.declare_process
generic_process_managers.declare_process
generic_network_giobals
generic_network_configuration.get_processor_id
generic_network_configuration
generic_communication_management.receive_message
generic_communication_management.receive_message
generic_communication_management.receive_message

10.1.16

time_keeper.remove_event

time_keeper.insert_event

timer_controller.cancel_timer

timer_controller.set_timer

generic_process_table
generic_communication_management.receive_message

CMU/SEI-89-TR-19

319

Package/Procedure to Requirements Mapping

Requirement

Package/Procedure

10.1.17

time_keeper.remove_event

time_keeper.insert_event

timer_controller.cancel_timer

timer_controller.set_timer

generic_process_table
generic_communication_management.receive._message

10.1.18

generic_communication_management.receive_message
generic_communication_management.receive_message

10.1.19

generic_communication_management

10.1.20

generic_communication_management.receive_message
generic_communication_management.receive_message
generic_communication_management.receive_message

10.1.21

generic_communication_management.receive_message
generic_communication_management.receive_message
datagram_management.new_gueue
datagram_management.get_first
datagram_management.dequeue
datagram_management.delete

10.1.22

generic_process_table
generic_process_managers_globals
generic_process_managers.create_process
generic_communication_management

10.1.23

generic_process_managers.create_process
generic_communication_management

10.1.24

generic_communication_management.receive_message
generic_communication_management.receive_message
generic_communication_management.receive_message

10.1.25

generic_communication_management.send_message_and_wait
generic_communication_management.send_message_and_wait
generic_communication_management.send_message_and_wait
generic_communication_management.send_message

10.1.26

network_configuration
generic_process_managers.declare_process
generic_network_configuration
generic_communication_management.receive_message
generic_communication_management.receive_message
generic_communication_management.receive_mmessage
generic_communication_management.send_message

10.1.27

generic_communication_management.cend_message_and_wait
genaric_communication_management.send_message_and_wait
generic_communication_management.send_message_and_wait

10.1.28

generic_communication_management

10.1.29

generic_communication_management
bus_io.send_kernel_datagram
bus_io.send_process_datagram

320

CMU/SEI-89-TR-19

Package/Procedure to Requirements Mapping

Requirement

Package/Procedure

10.1.30

generic_communication_management

10.1.31

generic_communication_management

10.1.32

generic_communication_management.send_message_and_wait
generic_communication_management.send_message_and_wait
generic_communication_management.send_message_and_wait
bus_io.send_process_datagram

10.1.33

generic_communication_management
bus_io

10.1.34

generic_communication_management
bus_io

10.1.35

generic_communication_management.receive_message
generic_communication_management.receive_message
generic_communication_management.receive_message

10.1.36

generic_communication_management.receive_message
generic_communication_management.receive_message
generic_communication_management.receive_message
bus_io

10.1.37

generic_process_table

10.1.38

generic_process.{able

10.1.39

generic_process_table

10.2.1

generic_communication_management.send_message
bus_io.send_kemel_datagram
bus_io.send_process_datagram

10.2.2

generic_communication_management.send_message
bus_io.send_kernel_datagram
bus_io.send_process_datagram

10.2.3

generic_communication_management.send_message_and_wait
generic_communication_management.send_message_and_wait
generic_communication_management.send_message_and_wait
bus_io.send_kernel_datagram

bus_io.send_process_datagram

10.2.4

generic_communication_management.send_message_and_wait
generic_communication_management.send_message_and_wait
generic_communication_management.send_message_and_wait
bus_io.send_kernel_datagram

bus_io.send_process_datagram

10.2.5

generic_communication_management.send_message
bus_io.send_kernel_datagram
bus_io.send_process_datagram

10.2.6

generic_communication_management.send_message
bus_io.send_kernel_datagram
bus_io.send_process_datagram

CMU/SEI-89-TR-19

321

Package/Procedure to Requirements Mapping l
Requirement Package/Procedure
10.2.7 generic_communication_management.send_message_and_wait

generic_communication_management.send_message_and_wait
generic_communication_management.send_message_and_wait
bus_io.send_kemnel_datagram

bus_io.send_process_datagram

10.2.8 generic_communication_management.send_message _and_wait
generic_communication_management.send_message_and_wait
generic_communication_management.send_message_and_wait
bus_io.send_kernel_datagram

bus_io.send_process_datagram

10.2.9 generic_communication_management.receive_message
generic_communication_management.receive_message
generic_communication_management.receive_message
bus_io.send_kerne!_datagram
bus_io.send_process_datagram

10.2.10 generic_communication_management.receive_message
generic_communication_management.receive_message
generic_communication_management.receive_message
bus_io.send_kemel_datagram
bus_io.send_process_datagram

10.2.11 generic_communication_management.send_message_and_wail
generic_communication_management.send_message_and_wait
generic_communication_management.send_message_and_wait
generic_communication_management.send_message

322 CMU/SEI-89-TR-19

Package/Procedure to Requirements Mapping

Requirement Package/Procedure

11.1.1 interrupt_names
generic_interrupt_globais

11.1.2 kernel_interrupt_management.bind_interrupt_handler
kernel_encapsulation.in_interrupt
generic_interrupt_management.bind_interrupt_handler
generic_interrupt_management.simulate_interrupt

11.1.3 generic_interrupt_management.simulate_interrupt

11.1.4 kernel_interrupt_management.enable
generic_interrupt_management.enable
generic_interrupt_globals

11.1.5 kemel_interrupt_management.disable
generic_interrupt_management.disable
generic_interrupt_globals

11.1.6 interprocessor_interrupts
generic_interrupt_globals

11.1.7 kernel_interrupt_management.enabied
generic_interrupt_management.enabled

11.1.8 kernel_interrupt_management.simuiate_interrupt
generic_interrupt_management.simuiate_interrupt’

11.1.9 kernel_interrupt_management.bind_interrupt_handier
generic_interrupt_management.bind_interrupt_handler

11.1.10 kernel_interrupt_management.bind_interrupt_handler
generic_interrupt_management.bind_interrupt_handier

1111 low_level_interrupt_management.bind_slow_interrupt
low_level_interrupt_management.bind_fast_interrupt
kernel_interrupt_management.bind_interrupt_handler
generic_interrupt_management.bind_interrupt_handler

11.1.12 generic_process_attribute_modifiers.wait
generic_process_attribute_modifiers. wait
generic_communication_management.receive_message
generic_communication_management.receive_message
generic_communication_management.receive_message
generic_communication_management.send_message_and_wait
generic_communication_management.send_message_and_wait
generic_communication_management.send_message_and_wait

11.1.13 kernel_interrupt_management.bind_interrupt_handier
generic_interrupt_management.bind_interrupt_handier

11.1.14 generic_interrupt_globals

11.1.15 kernel_interrupt_management
generic_interrupt_management

CMU/SEI-89-TR-19 323

Package/Procedure to Requirements Mapping

Requirement

Package/Procedure

11.1.16

time_keeper.initialize
low_level_interrupt_management.initialize
interrupt_names

bus_io.initialize

11.1.17

generic_interrupt_globals

11.1.18

kernel_exceptions

11.1.19

generic_interrupt_globals

11.1.20

kernel_interrupt_management
generic_interrupt_management

11.1.21

interrupt_names
generic_interrupt_globals

11.2.1

ilim_body_machine_code
kim_body_machine_code

11.2.2

llim_body_machine_code
kim_body_machine_code

11.2.3

kernel_interrupt_management.bind_interrupt_handler
generic_interrupt_management.bind_interrupt_handler

11.2.4

flim_body_machine_code
kim_body_machine_code

324

CMU/SEI-89-TR-19

Package/Procedure to Requirements Mapping

Requirement

Package/Procedure

12.1.1

generic_time_globals
generic_kernel_time

12.1.2

generic_time_management
clock.adjust_epoch_time
clock.adjust_elapsed_time
clock.get_time
clock.stop_clock
clock.start_clock

12.1.3

timer_controller.get_current_count
timer_controller.acknowledge_timer_interrup
timer_controller.disable_timer
timer_controller.enable_timer
timer_controller.initialize_timer
low_ievel_clock

generic_time_management

clock.get_time

12.1.4

clock.adjust_epoch_time
clock.adjust_elapsed_time
clock.get_time
clock.stop_clock
clock.start_clock

12.1.5

generic_kernel_time

12.1.6

generic_kemei_time

12.1.7

generic_time_management
clock.adjust_epoch_time
clock.adjust_elapsed_time
clock.get_time
clock.stop_clock
clock.start_clock

12.1.8

generic_time_management

12.1.9

generic_time_management
generic_time_globals.create_epoch_time
generic_time_giobals.create_elapsed_time

12.1.10

time_keeper.adjust_elapsed_time
generic_time_management.adjust_elapsed_time
clock.adjust_elapsed_time

12.1.11

time_keeper.adjust_elapsed_time
generic_time_management
generic_process_table

12.1.12

time_keeper.reset_epoch_time
generic_time_management.adjust_epoch_time
clock.adjust_epoch_time

CMU/SEI-89-TR-19

Package/Procedure to Requirements Mapping

Requirement

Package/Procedure

12.1.13

time_keeper.reset_epoch_time
generic_time_management
generic_process_table

12.1.14

generic_time_management

12.1.15

timer_controller.get_current_count
low_level_clock
generic_time_management.read_clock

12.1.16

generic_time_management.synchronize
generic_time_management.synchronize
generic_time_management.synchronize

12.1.17

time_keeper.remove_event
time_keeper.remove_event
time_keeper.insert_event
time_keeper.insert_event
timer_controller.cancel_timer
timer_controller.cancel_timer
timer_controller.set_timer
timer_controller.set_timer
generic_time_management.synchronize
generic_time_management.synchronize
generic_time_management.synchronize

12.1.18

generic_time_management.synchronize
generic_time_management.synchronize
generic_process_table

12.1.19

generic_process_table

12.1.20

generic_time_management.synchronize
generic_time_management.synchronize
generic_time_management.synchronize

12.1.21

generic_time_management.synchronize
generic_time_management.synchronize
generic_time_management.synchronize

12.1.22

generic_time_management.synchronize
generic_time_management.synchronize

326

CMU/SEI-89-TR-18

Package/Procedure to Requirements Mapping

Requirement

Package/Procedure

12.1.23

gkt_body_machine_code
generic_time_globals.to_epoch_time
generic_time_globals.to_elapsed_time
generic_time_globals.to_kernel_time
generic_time_globais.to_kernel_time
generic_time_globals.to_Ada_duration
generic_time_globals.to_elapsed_time
generic_time_globals.">="
generic_time_globals.">"
generic_time_globals."<="
generic_time_globals. <"
generic_time_globals.">="
generic_time_globals.">"
generic_time_globals."<="
generic_time_globals."<"
generic_time_globals."™
generic_time_globais.™"
generic_time_globals.™"
generic_time_globals."-"
generic_time_globatls."+"
generic_time_globals.base_time
generic_time_globals."-"
generic_time_globais."-"
generic_time_globals."+"
generic_time_giobals.microseconds
generic_time_globals.milliseconds
generic_time_globals.seconds
generic_time_globals.seconds
generic_kernel_time.">="
generic_kemei_time.">"
generic_kernel_time."<="
generic_kernel_time."<"
generic_kemel_time."-"
generic_kermel_time."+"
generic_kernel_time.""
generic_kermel_time."*"
generic_kernel_time."™"
generic_kemel_time."-"
generic_kemel_time."+"
generic_kemel_time.seconds
generic_kernel_time.milliseconds
generic_kemel_time.seconds
generic_kernel_time.seconds

CMU/SEI-88-TR-19

Package/Procedure to Requirements Mapping

Requirement

Package/Procedure

12.1.24

gkt_body_machine_code
generic_time_globals.to_epoch_time
generic_time_globals.to_elapsed_time
generic_time_globals.to_kernel_time
generic_time_globals.to_kernel_time
generic_time_giobals.to_Ada_duration
generic_time_globals.to_elapsed_time
generic_time_globals.">="
generic_time_globals.">"
generic_time_globals."<="
generic_time_globais."<"
generic_time_globals.">="
generic_time_globais.">"
generic_time_globals."<="
generic_time_globals."<"
generic_time_globals.™
generic_time_globals.™"
generic_time_globals.™"
generic_time_globals."-"
generic_time_globals."+"
generic_time_globals.base_time
generic_time_giobals."-"
generic_time_globals."-"
generic_time_globals."+"
generic_time_globals.microseconds
generic_time_globals. milliseconds
generic_time_globals.seconds
generic_time_globals.seconds
generic_kernel_time.">="
generic_kernel_time.">"
generic_kernel_time."<="
generic_kemel_time."<"
generic_kernel_time."-"
generic_kernel_time."+"
generic_keme|_time.™"
generic_kemel_time.™™"
generic_kernel_time."*"
generic_kemel_time."-"
generic_kernel_time."+"
generic_kernel_time.seconds
generic_kemel_time.milliseconds
generic_kernel_time.seconds
generic_kernel_time.seconds

12.1.25

generic_time_globals
generic_kernel_time

12.1.26

time_keeper

12.1.27

generic_time_management.synchronize
generic_time_management.synchronize
generic_process_table

328

CMU/SEI-89-TR-19

Package/Procedure to Requirements Mapping

Requirement Package/Procedure

12.2.1 time_keeper.adjust_elapsed_time
generic_time_management.adjust_elapsed_time
clock.adjust_elapsed_time

12.2.2 time_keeper.reset_epoch_time
generic_time_management.adjust_epoch_time
clock.adjust_epoch_time

12.2.3 generic_time_management.read_clock

12.2.4 generic_time_management.synchronize
generic_time_management.synchronize
generic_time_management.synchronize

12.2.5 generic_time_management.synchronize
generic_time_management.synchronize
generic_time_management.synchronize

12.2.8 clock.get_time

CMU/SEI-89-TR-19 329

Package/Procedure to Requirements Mapping

Requirement

| Package/Procedure

13.1.1

generic_alarm_management.set_alarm
generic_alarm_management

13.1.2

time_keeper.remove_event
time_keeper.insert_event
timer_controlier.cancel_timer
timer_controller.set_timer
generic_process_table

13.1.3

time_keeper.remove_event
time_keeper.insert_event
timer_controller.cancel_timer
timer_controlier.set_timer
generic_process_table
generic_alarm_management.set_alarm

13.14

generic_alarm_management
generic_alarm_management

13.1.5

generic_alarm_management.set_alarm
generic_alarm_raanagement
generic_alarm_management

13.16

generic_alarm_management.set_alarm

13.1.7

generic_process_table
generic_alarm_management.set_alarm

13.1.8

generic_process_table

13.1.9

generic_process_table
generic_alarm_manzgement.set_alarm

13.1.10

time_keeper.remove_event
time_keeper.insert_event
timer_controller.cancel_timer
timer_controller.set_timer
generic_process_table
generic_alarm_management.cancel_alarm

13.1.11

generic_process_table

13.2.1

generic_alarm_management.set_alarm
generic_alarm_management

1322

generic_alarm_management.cancel_alarm

13.2.3

generic_alarm_management

330

CMU/SEI-89-TR-19

Package/Procedure to Requirements Mapping

Requirement

Package/Procedure

14.11

generic_tool_interface.begin_collection

14.1.2

tooi_interface_globais
generic_tool_interface.begin_collection

14.1.3

tool_interface_globals
generic_tool_interface.begin_coliection

14.1.4

tool_interface_globals
generic_tool_interface.begin_collection

14.1.5

tooi_logger.log_message_contents
tool_logger.log_message_attributes
tool_logger.log_process_attributes

tool_interface_globals

scheduler.schedule_inh

scheduler.schedule

generic_process_attribute_modifiers.kill
generic_cormmunication_management.receive_message
generic_communication_management.receive_message
generic_communication_management.receive_message
generic_communication_management.send_message_and_wait
generic_communication_management.send_message_and_wait
generic_communication_management.send_message_and_wait
generic_communication_management.send_message

14.1.6

tool_logger.log_process_attributes
tool_interface_globals
generic_tool_intertace.begin_coliection
generic_tool_interface

14.1.7

generic_tool_interface.begin_collection

14.1.8

generic_tool_interface.cease _collection

14.1.9

too!_logger.log_process_attributes
tool_interface_globals
generic_tool_interface.begin_collection
generic_tool_intertace

14.1.10

tool_logger.log_message_attributes
tooi_interface_globals
generic_tool_interface.begin_collection
generic_tool_interface

14.1.11

generic_too!_interface.cease_collection

14.1.12

tool_logger.log_message_attributes
tool_interface_globals
generic_tool_interface.begin_collection
generic_tool_interface

14.1.13

tool_logger.log_message_contents
tool_interface_globais
generic_tool_interface.begin_collection
generic_tool_interface

CMU/SEI-89-TR-19

IAn

Package/Procedure to Requirements Mapping

Requirement

Package/Procedure

14.1.14

generic_tool_interface.cease_collection

14.1.15

tool_interface_globals
generic_tool_interface.read_process_table
generic_tool_interface.size_of_process_table
generic_tool_interface
generic_process_table.size_of_process_table

14.1.16

generic_tool_interface.read_interrupt_table
generic_tool_interface

14.1.17

tool_logger.log_message_contents
tool_logger.log_message_attributes
tool_logger.log_process_attributes

14.1.18

generic_tool_interface.cease_collection
generic_tool_interface.begin_collection

14.2.1

generic_tool_interface.begin_collection

1422

generic_tool_interface.cease_collection

1423

tool_logger.log_message_contents
tool_logger.log_message_attributes
tool_logger.log_process_attributes

scheduler.schedule_ih

scheduler.schedule

generic_process_attribute_modifiers.kill
generic_communication_management.receive_message
generic_communication_management.receive_message
generic_communication_management.receive_message
generic_communication_management.send_message_and_wait
generic_communication_management.send_message_and_wait
generic_communication_management.send_message_and_wait
generic_communication_management.send_message

14.2.4

tool_logger.log_message_contents
tool_logger.log_message_attributes
tool_logger.log_process_attributes
generic_tool_interface.cease_collection
generic_tool_interface.begin_collection

14.2.5

tool_logger.log_message_contents
tool_logger.log_message_attributes
tool_logger.log_process_attributes

scheduler.schedule_ih

scheduler.schedule

generic_process_attribute_modifiers.kill
generic_communication_management.receive_message
generic_communication_management.receive_message
generic_communication_management.receive_message
generic_communication_management.send_message_and_wait
generic_communication_management.send_message_and_wait
generic_communication_management.send_message_and_wait
generic_communication_management.send_message

332

CMU/SEI-89-TR-19

Package/Procedure to Requirements Mapping

Requirement

Package/Procedure

14.2.6

tool_logger.log_message_contents
tool_logger.log_message_attributes
tool_logger.log_process_attributes
scheduler.schedule_ih

scheduler.schedule
generic_process_attribute_madifiers.kill
generic_communication_management.receive_message
generic_communication_management.receive_message
generic_communication_management.receive_message

generic_communication_management.send_message

generic_communication_management.send_message_and_wait
generic_communication_management.send_message_and_wait
generic_communication_management.send_message_and_wait

CMU/SEI-89-TR-19

333

Appendix G: Requirement to Procedure Mapping

A few notes about the requirements mapping tabies:

¢ Only procedures and functions that appear at the package specification level
occur in the table. No instantiations are included (only the generic source).

¢ Top-level package specifications occur only when there are internal objects that

fulfill requirements.

* Overloaded names appear multiple times.

e The ordering of procedures and entries follows the order of the entries in the

specification.
Requirements to Package/Procedure Mapping
Package/Procedure Behavior Performance
bus_io 10.1.33
10.1.34
10.1.36
bus_io.initialize 6§13 6.2.1
514
11.1.16
bus_io.send_process_datagram 7.1.21 10.2.1
7128 1022
7.1.26 1023
1016 1024
10.1.29 1025
10.1.32 10.2.6
10.2.7
1028
10.2.9
10.2.10
bus_io.send_kernel_datagram 7.1.21 10.2.1
7.1.25 10.2.2
7.1.26 10.2.3
10.1.6 10.24
10.1.29 10.2.8
10.2.6
10.2.7
10.2.8
1029
10.2.10
bus_io.multi_send 6.14
€19
clock.start_clock §1.3 6.2.1
514
517
12.1.2
1214
1217
clock.stop_clock 513
514
5.1.7
121.2
1214
12.1.7
334 CMU/SEI-89-TR-19

Requirements to Package/Procedure Mapping

Package/Procedure

Behavior

Performance

clock.get_time

513
514
517
12.1.2
1213
1214
12.1.7

1228

clock .adjust_selapsed_time

5§13
514
517
12.1.2
1214
117
12.1.10

12.21

clock.adjust_epoch_time

§13
514
§1.7
1212
12.14
1217
12.1.12

122.2

context_save_area

514

context_switcher.save_context

714

9.23

context_switcher.rastore_process

714

924

context_switcher.switch_processes

714

8.26

context_switcher_globals

513
514

dark_text_io

514

dark_text_io.to_hex

514

datagram_globals

514
6.1.11

datagram_management.alloc_dg

514
6.1.11

datagram_management.delete

514
6.1.11
10121

datagram_management.dequeue

514
6.1.11
10.1.21

datagram_management.enqueue

514
6.1.11
10.1.21

datagram_management.free_dg

514
6.1.11

datagram_management.get_first

514
6.1.11
10.1.21

datagram_management.new_queue

514
6.1.11
10.1.21

CMU/SEI-89-TR-19

335

Requirements to Package/Procedure Mapping

Package/Procedure

Behavior

Performance

datagram_management. kpro¢_initialize

514
6.1.11

datagram_management.nproc_initialize

514
6.1.11

datagram_management.free_gueue_status

514
6.1.11

exception_raiser

5141

exception_raiser.raise_exception

511

generic_alarm_management

518

13.14
13158
13.23

generic_alarm_management.set_alarm

9.186

8.1.8

9.1.22
13.1.1
13.14
13.1.5
13.1.6
13.1.7
13.1.9

13.2.1

generic_alarm_management.set_alarm

9.1.6

9.18

9.1.22
13.11
13.1.3
13.1.5
13.16
13.1.7
1319

13.21

generic_alarm_management.cancel_alarm

9.1.22
13.1.10

13.2.2

generic_communication_globais

514
517

generic_communication_management

6.1.9
6.1.11
10.1.19
10.1.22
10.1.23
10.1.28
10.1.29
10.1.30
10.1.31
10.1.33
10.1.34

generic_communication_management.send_message

74.21
10.1.2
10.1.5
10.1.6
10.1.25
10.1.26
14.1.5

10.21
1022
10.2.5
10.2.6
10.2.11
1423
14.2.5
1426

336

CMU/SEI-89-TR-19

i

Requirements to Package/Procedure Mapping

Package/Procedure

Behavior

Performance

generic_communication_management.send_message_and_wait

7.1.21
7128
7.1.26
9.1.6
9.1.8
9.1.22
10.1.2
10.1.3
10.1.4
10.1.5
10.1.6
10.1.10
10.1.11
10.1.25
10.1.27
10.1.32
11112
1415

1023
1024
10.2.7
10.2.8
10.2.11
1423
1425
14.2.6

generic_communication_management.send_message_and_wait

71.21
7.1.25
7.1.26
9.1.6
9.18
9.1.22
10.1.2
10.1.3
10.1 4
10.1.5
10.1.6
10.1.7
10.1.9
10.1.10
10.1.71
10.1.25
10.1.27
10.1.32
11.1.12
1415

1023
1024
10.2.7
1028
10.2.11
1423
14.2.5
14.2.6

generic_communication_management.send_message_and_wait

7.1.21
7.1.25
7.1.26
9.16
9.1.8
9.1.22
10.1.2
10.1.3
10.1.4
1015
10.1.6
10.1.8
10.1.9
10.1.10
10.1.11
10.1.25
10.1.27
10.1.32
11.1.12
14.1.5

1023
1024
10.2.7
10.2.8
10.2.11
1423
14.2.5
142.6

CMU/SEI-89-TR-19

337

Requirements to Package/Procedure Mapping

Package/Procedure

Behavior

Performance

generic_communication_management.roceive_message

9.1.6
9.1.8
9.1.22
10.1.12
10.1.13
10.1.14
10.1.15
10.1.20
10.1.21
10.1.24
10.1.26
10.1.35
10.1.36
11.1.12
14.1.5

10.2.9
10.2.10
1423
1425
1426

generic_communication_managemaent.raceive_message

9.16
9.1.8
9.1.22
10.1.12
10.1.13
10.1.14
10.1.15
10.1.16
10.1.18
10.1.20
10.1.21
10.1.24
10.1.26
10.1.35
10.1.36
11.1.12
1415

10.2.9
10.2.10
1423
14.2.5
14.2.6

generic_communication_management.receive_message

9.1.6
9.1.8
9.1.22
10.1.12
10.1.13
10.1.14
10.1.15
10.1.17
10.1.18
10.1.20
10.1.24
10.1.26
10.1.35
10.1.36
11112
14.1.5

1029
10.2.10
1423
14285
14.2.6

generic_communication_management.aliocate_device_receiver

7.1.14

724

generic_interrupt_globais

1.
11.
1R
11
11
11
11.
1.

-~ PO N~

generic_interrupt_management
-

1.1,
1.

-
N -
o wm

CMU/SEI-89-TR-19

Requirements to Package/Procedure Mapping

Package/Procedure Behavior Pertormance
generic_interrupt_management.enable 1114
generic_interrupt_management.disable 11.1.5
generic_interrupt_management.enabled 11.1.7
generic_interrupt_management.simulate_interrupt 1112
1113
11.1.8
generic_interrupt_management.bind_interrupt_handier 11.1.2 1123
1119
11.1.10
11.1.11
11.1.13
generic_kernel_time 12.1.1
1215
1218
12.1.25
generic_kernel_time.seconds 12.1.23
12.1.24
generic_kernel_time.seconds 12.1.23
12.1.24
generic_kernel_time.milliseconds 12.1.23
12.1.24
generic_kernel_time.seconds 12.1.23
12.1.24
generic_kernel_time."+" 12.1.23
12.1.24
generic_kernel_time."-" 12.1.23
12.1.24
genaric_kernel_time."™ 12.1.23
12.1.24
generic_kernel_time."™" 12.1.23
12.1.24
generic_kemel_time."/" 121.23
12.1.24
generic_kernel_time."+" 12.1.23
12.1.24
generic_kernel_time."-" 12.1.23
12.1.24
generic_kernel_time."<" 12.1.23
12.1.24
generic_kernel_time."<=" 121.23
12.1.24
generic_kernel_time.">" 12.1.23
12.1.24
generic_kernel_time.">=" 12.1.23
12.1.24

CMU/SEI-89-TR-19

339

Requirements to Package/Procedure Mapping

Package/Procedure

Behavior

Performance

generic_network_configuration

516
6.1.6
6.1.10
6.1.11
7.1.14
7.1.16
10.16
10.1.15
10.1.26

621

generic_network_configuration.get_processor_id

6.1.11
10.1.6
10.1.16

6.21

generic_network_globals

5§13
514
518
6.1.11
10.1.6
10.1.15

generic_processor_management

518
6.1.6
6.1.7
618
6.1.11

generic_processor_management.initialize_master_processor

6.1.1
€613
6.14
6.1.5

6.2.1
6.2.2

generic_processor_management.initialize_subordinate_processor

6.1.2
6.1.3
6.14

6.2.1

generic_processor_management.initialization_complete

7.1.15
7.1.16
7117
7.1.25
7.1.26

6.2.1

generic_process_attribute_modifiers

5.18
6.19
711
712
7.1.13

generic_process_attribute_maodifiers die

7.1.18
7.1.21
7.1.25
7.1.26
8.1.12

722

generic_process_attribute_modifiers kill

7.1.18
7.1.20
7.1.25
7.1.26
8.1.12
1415

722

1423
1425
1426

generic_process_attribute_modifiers.set_process_preemption

9.1.12
9.1.22

922

CMU/SEI-89-TR-19

Requirements to Package/Procedure Mapping

Package/Procedure

Behavior

Pertormance

generic_procass_attribute_modifiers.set_process_priority

9.16
9.18
9.1.22

9.2.1

generic_process_attribute_modifiers. wait

9.1.6
9.1.8
9.1.14
9.1.16
9.1.17
9.1.22
8.1.29
11.1.12

823

generic_process_attribute_modifiers. wait

9.1.6
918
9.1.14
9.1.15
9.1.17
9.1.22
9.1.29
11.1.12

9.23

generic_process_attribute_readers

5§18

generic_process_attribute_readers.name_of

7.1.24
7.1.25
7126
1011

generic_process_attribute_readers.who_am_i

7123

generic_process_attribute_readers.get_process_preemption

9.1.13

generic_process_attribute_readers.get_process_priority

9.19

generic_process_managers

516
518
6.1.9
711
712
718
7.1.13

generic_process_managers.declare_process

713
10.1.1
10.1.8
10.1.15

6.2.1

genaric_process_managers.declare_process

713
10.1.1
10.1.6
10.1.15
10.1.26

6.2.1

CMU/SEI-89-TR-19

341

Requirements to Package/Procedure Mapping

Package/Procedure

Behavior

Pertormance

generic_process_managers.create_process

714
7158
716
717
718
719

7.1.10
7112
7.1.25
7126
7.1.27

9.1.1
9.1.2
9.1.7

9.1.11
10.1.22
10.1.23

6.2.1
721
725
726

generic_process_managers_globals

10.1.22

342

CMU/SEI-88-TR-19

Requirements to Package/Procedure Mapping

Package/Procedure

Behavior

Performance

generic_process_table

516
714
7.16
717
719

7.1.21
7.1.27

8.1.1
8.12
813
814
815
8.186
819

8.1.10
8.1.11
8.1.16

9.1.7
9.18
9.19

9.1.11
9.1.12
9.1.13
91.15
9.1.16
9.1.19
9.1.20
9.1.23
9.1.29
10.1.2
1013
10.1.7
10.1.8
10.1.12
10.1.16
10.1.17
10.1.22
10.1.37
10.1.38
10.1.39
12.1.11
12.1.13
12.1.18
12.1.19
12.1.27
13.1.2
13.1.3
13.1.7
13.1.8
13.1.9
13.1.10
13.1.11

821

generic_process_tabie "<="

514

generic_procass_table."<="

514

generic_process_tabie.create_process_information_record

514

generic_process_table.destroy_process_information_record

514

generic_process_table.initialize_process_table

514

generic_process_table.locate process

514

CMU/SEI-89-TR-19

| Requirements to Package/Procedure Mapping
[Package/Procedure Behavior Performance
! generic_process_table.size_of_process_tabie 514
14.1.15
generic_queue_manager.create 514 6.2.1
generic_queue_manager.delete 514 524
generic_queue_manager delete 514 524
Lgeneric_queue_manager.enqueue 514 524
‘ genefic_queue_manager.enquaue 514 524
' generic_gqueue_manager.dequeue 514 ‘524
rgeneric_queue_manager.remove 514 524 |
| generic_queue_manager.get_head 514 524 Nl
| generic_gqueus_manager.get_slement 514 524
. generic_gueue_manager.empty 514 524
ELgeneric_queue_manager.inmalize_iterator 514 524
[generic_queue_manager.intialize_backward_iterator 514 524
! generic_queue_manager.end_of_queue 514 524
| generic_gueue_manager get_next 514 524
i generic_gueue_manager.remove_next | 514 524

CMU/SEI-89-TR-19

Requirements to Package/Procedure Mapping

Package/Procedure

Behavior

Performance

generic_schedule_types

© o
RIS
winv oo

9.1.56
9.1.10
9.1.23

generic_semaphore_management

518
8.1.1
8.1.2
8.1.14

8.2.1

generic_semaphore_management.claim

813
814
817
8.18
819
8.1.16
9.1.6
9.1.8

822

generic_semaphore_management.claim

8.13
814
8.1.5
8.1.7
8.1.8
8.1.9
8.1.16
9.1.6
9.1.8

822

generic_semaphore_management.claim

813
814
8.1.6
817
8.1.8
8.1.9
8.1.16
9.16
9.1.8

8.2.2

generic_semaphore_management.release

8.1.10
81.11
8.1.13
8.1.15

823

genenc_storage_manager.intialize

514

6.2.1

generic_storage_manager .allocate

514

524

genaeric_storage_manager deallocate

514

624

generic_timeslice_management

518
913
9.14
8.15
9.1.10
9.1.21
9.1.24
9.1.26

9.24
9.2.6
9.27

generic_timeslice_management.set_timesiice

9.1.18

CMU/SEI-89-TR-19

345

Requirements to Package/Procedure Mapping
Package/Procedure Behavior Performance l
generic_timeslice_management.enabie_time_slicing 9.1.19 925
generic_timeslice_management.disable_time_slicing 9.1.20 925 l
generic_time_globals 12.1.1
12.1.25
generic_time_globals.create_elapsed_time 1219 '
generic_time_globals.create_epoch_time 12.1.9
generic_time_globals.seconds 12.1.23
12124 .
generic_time_globails.seconds 12.1.23
12.1.24
generic_time_globals.milliseconds 12.1.23
12.1.24
generic_time_globals. microseconds 12.1.28
12.1.24
generic_time_globais."+" 12.1.23 I
12.1.24
generic_time_globals."-" 12.1.23
12.1.24
generic_time_globals.”-" 12.1.23
12.1.24
generic_time_globals.base_time 12.1.28 .
12.1.24
generic_time_globais."+" 12.1.23
12.1.24 '
generic_time_globals.”-" 12123
12.1.24
generic_time_giobals.™ 12.1.28 '
12.1.24
generic_time_globals.™ 12.1.23
12.1.24 '
generic_time_giobals.”/” 12.1.23
12124
generic_time_globals."<" 12.1.23
12.1.24
generic_time_globals."<=" 12.1.23
12.1.24
generic_time_globals.">" 12.1.23 l
12.1.24
generic_time_globals.">=" 121.23
12.1.24 I
generi~_time_globals."<" 12.1.23
12.1.24
generic_time_globals."<=" 12.1.28 '
12124
generic_time_globals.">" 12.1.23
12124 '
346 CMU/SE!I-88-TR-19 l

Requirements to Package/Procedure Mapping

Package/Procedure

Behavior

Performance

generic_time_globals.">="

12.1.23
12.1.24

generic_time_globals.to_elapsed_time

12.1.23
12.1.24

generic_time_giobals.to_Ada_duration

12.1.23
12.1.24

4
rgensric_ﬂme _globals.to_kernel_time

12.1.23
12.1.24

generic_time_globals.to_kernel_time

12.1.23
12.1.24

generic_time_giobals.to_elapsed_time

12.1.23
12.1.24

generic_time_globals.to_epoch_time

12.1.23
12.1.24

generic_time_management

518
6.16
1212
12.1.3
1217
12.18
12.1.9
12.1.11
12.1.13
12.1.14

generic_time_management.adjust_selapsed_time

12.1.10

12.21

generic_time_management.adjust_epoch_time

12.1.12

1222

generic_time_management.read_clock

12.1.15

1223

generic_time_management.synchronize

12.1.16
12.1.17
12.1.20
12.1.21

1224
1225

generic_time_management.synchronize

12.1.16
12117
12.1.18
12.1.20
12.1.21
12.1.22
121.27

1224
1225

generic_time_management.synchronize

12.1.16
12.1.17
12.1.18
12.1.20
121.21
12.1.22
12.1.27

12.24
1225

generic_tool_interface

14.1.6

14.19

14.1.10
14.1.12
14113
14.1.15
14.1.16

CMU/SEI-89-TR-19

347

Requirements to Psckage/Procedure Mapping

Package/Procedure Behavior Performance
generic_tool_interface.begin_collection 14114 14.21

14.1.2 1424

1413

14.14

14.16

14.1.7

14.19

14.1.10

14.1.12

14.1.13

14.1.18
generic_tool_interface.cease_collection 14.1.8 1422

14.1.11 1424

14.1.14

14.1.18
generic_tool_interface.size_of process_table 14.1.15
generic_tool_interface.read_process_table 14.1.15
generic_tool_interface.read_interrupt _table 14.1.16
gkt_body_machine_code 514

12.1.23

12.1.24
hardware_intertace 514
hardware_intertace to_hw_bits8 514
hardware_interface to_hw_byte_ptr 514
hardware_interface to_hw_bits8_ptr 514
hardware_intarface.to_hw_bits8 ptr 514
internal_process_management.get_next_process_number | 5.1.4 524

10.11
internal_process_management.get_null_process_number | 5.1.4 524

10.1.1
internal_process_management.create_internal_process 514 6.2.1

6.1.11
internal_process_management.create_kearnel_rrocesses | 5.1.4 6.2.1

6.1.11
imterprocessor_interrupts 514

6.1.11

11186
interprocessor_interrupts.enable_kn_interrupt 514

6.1.11
interprocessor_interrupts.generate_kn_interrupt 514

6.1.11
interrupt_names 1114

11.1.16

11.1.21
ipi_body_machine_code 514

6.1.11
kernel_encapsulation.in_interrupt 11.1.2

CMU/SEI-89-TR-19

Requirements to Package/Procedure Mapping
Package/Procedure Behavior Performance
kernel_exceptions 5141
11.1.18
kernel_exceptions.to_string 514
kernel_interrupt_management 11.1.15
11.1.20
kernel_interrupt_management.enable 1114
kernel_interrupt_management disabie 1115
kernel_interrupt_management.enabled 1117
kernel_interrupt_management.simulate_interrupt . 11.1.8
kernel_interrupt_management.bind_interrupt_handier 11.1.2 11.23
11.1.8
11.1.10
11111
11.1.13
kim_body_machine_code 514 11.21
11.2.2
11.24
lics_body_machine_code 514
llh_body_machine_code 514
6.1.11
liim_body_machine_code 514 11.2.9
11.2.2
11.24
lipe_body Initialize_Process_State 514
low_level_clock 514
1213
12.1.15
low_lavel_context_switcher.hw_save_context 714
low_ ..al_context_switcher.hw_restore_process 714
low_level_context_switcher.hw_switch_processes 714
low_level_hardware 513
514
6.1.11
low_level_hardware.my_network_address 513
514
6.1.11
low_level_hardware.is_Kproc 513
514
6.1.1
low_lavel_hardware.is_Nproc 5§13
514
6.1.11
low_level_hardware.P 6§13
514
6.1.11
jow_level_hardware.V 513
514
6.1.11
CMU/SEI-89-TR-19

Requirements to Package/Procedure Mapping

Package/Procedure

Behavior

Performance

low_level_hardware.set_interrupt_priority

513
514
6.1.11

low_level_hardware.reset_interrupt_priority

613
§14
6.1.11

low_level_interrupt_management

low_level_interrupt_management.bind_fast_interrupt

low_level_interrupt_management.bind_slow_interrupt

iow_level_interrupt_management.initialize

jow_leve!_process_encapsulation.initialize_process_state

low_level_process_encapsulation.indirect_call

fow_level_storage_manager.aliocate

memory_addresses

mvme133A_definitions

mzB8305_definttions

network_configuration

621

network_configuration.get_processor_id

6.2.1

nproc.main_unit

350

CMU/SEI-88-TR-19

Requirements to Package/Procedure Mapping

Package/Procedure

Behavior

Performance

parallel_io_controller.inttialize_recv;

513
514

6.1.11

parallei_io_controller.initialize_xmit;

513
514

6.1.11

parallel_io_controller.enable_recv_interrupt;

513
514

6.1.11

paraliel_io_controller.enable_xmit_interrupt;

513
514

6.1.11

parallel_io_controller.disable_recv_interrupt;

513
514

6.1.11

parallel_io_controller.disable_xmit_interrupt;

513
514

6.1.11

paraliel_io_controller.recv_buffer_tull

513
514

6.1.11

parallel_io_controlier.xmit_bufter_enpty

§13
$14

61.11

parallel_io_controller.acknowledge_recv_interrupt

513
514

6.1.11

parallel_io_controlier.acknowledge_xmit_interrupt

513
514

6.1.11

paraliel_io_controller.send_packet

513
§14

611

parallei_io_controlier.receive_packet

513
5§14
6.1.1

1

process_encapsulation

7112

process_encapsuiationdummy_cail_frame

714

process_index_table.get_procass_identifier

6.1.11
10.1.6

10.1.

15

524

process_index_table get_process_index

6.1.1

10.1.

10.1.

1
6
15

524

process_index_tabie.set_process_index

6.1.1

10.1.

10.1.

1
6
15

6.2.1

process_index_table.ciear_process_index

6.11

10.1.
10.1.

1
6
15

6.2.1

CMU/SEI-89-TR-19

351

Requirements to Package/Procedure Mapring
Package/Procedure Behavior Pertormance
scc_porta allocate 513 524
514
scc_porta.dealiocate 513 524
514
scc_porta disable_rx_interrupts 5§13 524
514
scc_porta disable_tx_interrupts 513 5§24
514
scc_porta ensable_rx_interrupts 513 524
514
scc_porta.enable_tx_interrupts 513 524
[514
| scc_porta.get 513 524
514
scc_porta get_byte 513 524
514
scc_porta.initialize 513 524
514 621
scc_porta put_byte 513 524
514
scc_porta. send 513 524
514
i scc_porta.set 513 524
514
scheduler 9.1.26
9.1.28
scheduler.inttialize 514
scheduler.insert_process 9.15 524
9.1.23
scheduler.remove_process 9.1.23 5§24
scheduler.schedule 9.1.6 524
918 9.24
9.1.12 9.26
9.1.23 827
9.1.24 14.2.3
9.1.25 1425
9.1.27 1426
1415
scheduler.schedule_ih 9.1.23 524
9.1.24 924
9.1.25 926
1415 927
1423
14.25
14286
tc_body_machine_code 514
timer_controller.initialize 513 621
514
517
352 CMU/SEI-89-TR-19

Requirements to Package/Procedure Mapping

Package/Procsdure

Behavior

Performance

timer_controller.initialize_timer

12.1.3

timer_controller.enable_timer

12.1.3

timer_controller.disable_timer

12.1.3

timer_controller.acknowledge_timer_interrupt

12.1.3

timer_controller.get_current_count

121.3
12.1.15

timer_controller.set_timer 513

514
517
815
8.1.6

9.1.15
9.1.16
9.1.19
9.1.20
10.1.7
10.1.8
10.1.18
10.1.17

timer_controiler.cancel_timer 513

514
517
8.1.5
8.1.6

10.1.

9.1.15
9.1.186
9.1.19
§.1.20
10.1.7
10.1.8

16

10.1.17

time_burner.sponge

514

timeslice_parameters

9.1.2

9.1.18
9.1.19
9.1.20

1

time_keeper

8.1.12
12.1.26

time_keeper.initialize

513
514
517
11.1.

16

6.2.1

CMU/SEI-89-TR-19

353

[Requirements to Package/Procedure Mapping

Package/Procedure

Behavior

Performance

time_keeper.insert_svent

[N N
- A s
nNPrw

9.1.15
9.1.16
9.1.19
9.1.20
10.1.7
10.1.8
10.1.16
10.1.17

time_keeper.remove_event

513
514
517
8.15
8186
9.1.15
9.1.16
9.1.19
9.1.20
10.1.7
10.1.8
10.1.16
10.1.17

time_keeper.adjust_elapsed_time

12.1.10
12.1.11

12.21

time_keeper.reset_spoch_time

12.1.12
12.1.13

12.2.2

time_keeper_globals

514

tool_intertace_globais

14.1.2
1413
14.1.4
14.1.5
1416
1419
14.1.10
14.1.12
14.1.13
14.1.15

tool_intertace_output

517

tool_logger.iog_process_attributes

1415
14.1.6
14.1.9
14.1.17

1423
1424
1425
1426

tool_logger.log_message_attributes

14.1.5

14.1.10
14.1.12
14.1.17

14.23
1424
1425
1426

tool_logger.log_massage_contents

14.1.5
14.1.13
14.1.17

1423
14.24
14.2.5
14.2.6

354

CMU/SEI-88-TR-19

Appendix H: Short Names

Package Short Names
Package Short Name
ALARM_MANAGEMENT AM
BUS_IO BIO
CLOCK Cc
COMMUNICATION_GLOBALS CG
COMMUNICATION_MANAGEMENT CM
CONTEXT_SAVE_AREA CSA
CONTEXT_SWITCHER CS
CONTEXT_SWITCHER_GLOBALS CSG
CS_BODY CS
DATAGRAM_GLOBALS DGG
DATAGRAM_MANAGEMENT DGM
EXCEPTION_RAISER ER
GENERIC_ALARM_MANAGEMENT GAM
GENERIC_COMMUNICATION_GLOBALS GCG
GENERIC_COMMUNICATION_MANAGEMENT | GCM
GENERIC_INTERRUPT_GLOBALS GIG
GENERIC_INTERRUPT_MANAGEMENT GIM
GENERIC_KERNEL_TIME GKT
GENERIC_NETWORK_CONFIGURATION GNC
GENERIC_NETWORK_GLOBALS GNG
GENERIC_PROCESSOR_MANAGEMENT GRM
GENERIC_PROCESS_ATTRIBUTE_MODIFIERS | GPAM
GENERIC_PROCESS_ATTRIBUTE_READERS | GPAR
GENERIC_PROCESS_MANAGERS GPM
GENERIC_PROCESS_MANAGERS_GLOBALS | GPMG
GENERIC_PROCESS_TABLE GPTB
GENERIC_QUEUE_MANAGER GaM
GENERIC_SCHEDULE_TYPES GST
GENERIC_SEMAPHORE_MANAGEMENT GMM
GENERIC_STORAGE_MANAGER GSTM

CMU/SEI-89-TR-19

355

Package Short Name
GENERIC_TIMESLICE_MANAGEMENT GTSM
GENERIC_TIME_GLOBALS GTG
GENERIC_TIME_MANAGEMENT GT™M
GENERIC_TOOL_INTERFACE GTI
HARDWARE_INTERFACE Hi
INTERPROCESSOR_INTERRUPTS 1PI
INTERRUPT_GLOBALS IG
INTERRUPT_MANAGEMENT M
INTERRUPT_NAMES INames
KERNEL_ENCAPSULATION KEN
KERNEL_EXCEPTIONS KE
KERNEL_INTERRUPT_MANAGEMENT KIM
KERNEL_TIME KT
KiIM_BODY KIM
LLIM_BODY LLIM
LOW_LEVEL_CONTEXT_SWITCHER LLCS
LOW_LEVEL_INTERRUPT_MANAGEMENT LLIM
LOW_LEVEL_PROCESS_ENCAPSULATION LLPE
LOW_LEVEL_STORAGE_MANAGER LLSM
MEMORY_ADDRESSES MEM
MVME133A_DEFINITIONS MVME
M2Z8305_DEFINITIONS MZ
NCT_DEBUG NCTD
NETWORK_CONFIGURATION NC
NETWORK_GLOBALS NG
NPROC NPROC
PARALLEL_IO_CONTROLLER PIO
PE_BODY PE
PIO_BODY PIO
PROCESSOR_MANAGEMENT RM
PROCESS_ATTRIBUTE_MODIFIERS PAM
PROCESS_ATTRIBUTE_READERS PAR
PROCESS_ENCAPSULATION PE

356

Cr ")/SEI-89-TR-19

Package Short Name
PROCESS_INDEX_TABLE PIT
PROCESS_MANAGERS PM
PROCESS_MANAGERS_GLOBALS PMG
PROCESS_TABLE PTB
PTB_DEBUG PTB_DEBUG
SCC_PORTA PORTA
SCHEDULER SCH
SCHEDULE_TYPES ST
SEMAPHORE_MANAGEMENT MM
TC_BODY TC
TIMER_CONTROLLER TC
TIMESLICE_MANAGEMENT TSM
TIMESLICE_PARAMETERS TSP
TIME_GLOBALS TG
TIME_KEEPER TK
TIME_KEEPER_GLOBALS TKG
TIME_MANAGEMENT ™
TOOL_INTERFACE Tl
TOOL_INTERFACE_GLOBALS TIG
TOOL_INTERFACE_OQUTPUT TIO
TOOL_LOGGER TL

CMU/SEI-89-TR-19

357

Appendix I: Overview of VMS Version

The VMS version of the Kernel has the same functionality and structure as the 68020
version. The algorithms shown in the PDL of this document are applicable to both the
68020 and VMS versions. It is only in the code that the impact of each specific target
manifests itself.

The resulting logical structure of the VMS version is shown in Figure 47. This view
highlights where VMS concepts were applied to the Kernel.

e Eacin "node" is a single VMS process, with the Main Unit as the driver and the '
Kernel processes executing under control the Kernel. All of the “nodes” run on
a single VAX processor, using windows or terming!s to simulate nodes in a
network.'3 This simulates the 68020 version, where each Main Unit executes I
on its own, dedicated processor.
» Each Kernel uses a unique VMS TIMER for use in maintaining timeout and
alarm operations. This replaces the 68020 parallel_io timers with VMS timers. '
e Each Kernel uses the shared VMS (system) clock. This replaces the individual
68020 clocks with one VMS system clock.
e Each Kernel has its own mailbox, designated by node number, for receiving '
input from any other node in the system. This replaces the 68020
interprocessor inte: upts with VMS Asynchronous System Traps (ASTSs).
e cach Kernel has access to the mailbox of all other Kernels in the system (as '
illustrated for node O in Figure 47). This replaces the Nproc (and all associated
/O packages) with VMS system services and shared mailboxes for
communicating with remote Kernels. l
I

The net result is that all the special-purpose hardware required for the 68020 version
(timers, parallel /O controllers, Nproc, etc.) has all been absorbed by services provided by
VMS. Additional information about the VMS imple:nentation is described in [port 89].

31t may be possible to run each node on a different VAX machine communicating over DECnet, but no work
has been pursued along these lines.

358 CMU/SEI-88-TR-19

VMS Timer

Main Unit
Node 0

Node 0
Mailbox

Node 2
Mailbox

T

Main Unit

Node 2

l

VMS Timer

N\

VMS Clock

KEY

-a—— Data flow

- = AST

Figure 47: VMS Overview

VMS Timer

]

Main Unit
Node 1

Node 1
Mailbox

Node 3
Mailbox

Main Unit

Node 3

VMS Timer

CMU/SE!-89-TR-19

Appendix J: VMS Ada Compiler Dependencies

This appendix explains the compiler and machine dependencies of the DARK port to
VAX/VMS. The structure of this appendix parrallels that of Part IX, TeleSoft Ada Compiler
Dependencies.

J.1. Introduction

The DARK Project has ported DARK to VAX/VMS. This required three sets of changes

1. Adapting the compiler-dependent packages to VAX Ada.
2. Adapting the machine-dependent parts to the VAX-11.

3. Replacing some functional modules by others that invoke VAX Ada runtime
services.

This appendix addresses the first two items; the third is explained in [port 89].

J.1.1. Relevant Documents
VAX Ada Language Reference Manual [VLRM] (DEC AA-EG29A-TE)

VAX Ada Programmers Runtime Reference Manual [VPRRM] (DEC AA-EFB8A-TE)
[DARK Ada Style Guide]

[DARK VDIG]

J.2. Major Dependencies

The DARK software exhibits dependencies on the Ada development system in three major
areas:

¢ Aspects of basic software architecture and design.
¢ Representation and use of basic data types.
e Encapsulation of hand-coded assembler.

These will be discussed at successively greater levels of detail.

J.2.1. Software Architecture and Design
The features considered efficient by the Ada style guide for the most part remain efficient,

inciuding the representation of guarded regions.
There are two potential new areas of inefficiency

1. Parameters are never passed by value; they are aiways passed by reference
and the caller makes a local copy. |If the corresponding actual is a packed

360 CMU/SEI-89-TR-19

record component, or an object of & constrained subtype, the caller also
makes a copy. This is very inefficient; its potential impact on DARK is minor,
though, since the VMS version is not intended to support real-time
applications [VPRRM 3].

2. When the target of an Unchecked_Conversion is a constrained record type,
the compiler generates a constraint check. This potentially affects the
datagram allocation code [VI RM 13.10].

J.2.2. Basic Data Types

The basic data types were in accordance with the expectations of the project; the
differences from TeleSoft MC68020 Ada are within the scope of the Hardware_|Interface
abstraction [VLRM C].

The type System.Address is private, but there are many useful operations defined on it
[VLRM F].

J.2.3. Encapsulation of Assembler

Full information is given in [VLRM 13.9]. It is straightforward to interface to separate
machine-code bodies, though the specifications all have to be changed. It is also possible
to interface data objects as well as subprograms; this feature makes it easier for
machine-code bodies to see global variables declared in Ada [VLRM 1309a).

However, the compiler does not support the package Machine_Code [VLRM 13.8], so one
module of DARK had to be rewritten (the subprogram Process_Encapsulation.Indirect_Call).

Calling conventions are given in full in [VPRRM 3.4]. To a limited extent, they are tailorable.

J.3. Software Architecture and Design Dependencies

This chapter gives the main compiler dependencies and the findings with respect to the VAX
Ada compiler.

J.3.1. Code Customization
Coding conventions r2aly on these features of the Ada compiler:

» Generic instantiation is performed by code substitution at compile time.
e Constant actual values are substituted for the formals, and simple constant
comparisons will be done at compile time.

e Code guarded by conditiona! statements that are known at compile time to be
false ("dead code”) will be removed by the compiler and will not generate any
object code. (This is not necessary for correct functioning of the Keinel, but
makes it smaller and faster.)

According to the compiler docu..ientation, all these assumptions are valid. The compiler
tests showed that the given optimizations are, in fact, performed.

CMU/SEI-89-TR-19 361

J.3.2. Representation of Errors

The Kernel systematically represents error conditions by user-defined exceptions, and
reports them by raising the exception, presumably to be handled by the invoking code.

For this to be feasible, certain compiler features are assumed:

« The execution cost of guarded regions and unraised exceptions is very small,
preferably zero.

e The cost of raising and propagating an exception is reasonable; in particutar, it
is not so great as to prevent timely recovery by the exception handier.

e The exception mechanism can function safely and accurately in the context of a
DARK process.

The first assumption is false. The VAX hardware automatically creates a null guarded
region as part of the procedure call mechanism; this costs one longword of space and a
certain amount of time. However, since this overhead is an inescapable part of the
subprogram call, it might as well be put to good use. The marginal cost to DARK is, indeed,
zero.

The cost of raising and propagating an exception is high, but unavoidable given the VAX
signal-handling design. An explicit raise is encoded as a call to a library routine.
Unfortunately, so is a compiler-generated raise, which implies that a successful constraint
check, for exampie, is followed by a branch around a call, the call and associated
parameters being big enough to cause an |-cache miss.

Since the exception mechanism is part of the standard call sequence, exceptions can freely
propagate through assembler bodies. Means exist to raise exceptions from assembier
code. A stack plug can be constructed either in Ada or in assembiler.

The current DARK alarm management design will work without change.

J.3.3. Module Initialization

The pragma ELABORATE is implemented [VLRM B]. No difficulty was anticipated in the
module initialization code. Unfortunately, there were difficulties with generic instantiations;
as a consequence, it was necessary to include in every moduie that performs an
instantiation a pragma ELABORATE in specifying the generic being instantiated. This
change could safely be made in the other version of DARK, sc is not VMS specific.

J.3.4. Chapter 13 Issues

Those parts of the Kernel that manipulate the target machine rely to some extent on the
features provided in Chapter 13 of the Ada Language Reference Manual.

T Specific features required are:

¢ Size specifications [13.2(a)] are implemented, and will indeed pack objects to
the necessary bit or byte level.

362 CMU/SEI-88-TR-19

» Record representation clauses [13.3] are implemented as needed.
e Address clauses [13.5] are not implemented. The trick of using an access

value set by hand will work, but was not needed in the port since there was no
longer a requirement to bind a data structure to a specific address.

» The package System[13.7] is present as needed.
» The system-dependent named numbers [13.7.1] are defined properly.

e The attribute 'Address [13.7.2) is defined for both objects and subprograms.
There are some words about subprograms in [VLRM 13.7.2], whose effect is:

* any subprogram whose address is taken must be the subject of an
EXPORT pragma

* such subprograms must be declared at the outermost level of a package
specification or body

e The appropriate pragmata were added to comply with the first restriction; the
DARK code already obeyed the second.

» The attribute 'Size [13.7.2] is implemented.

e The machine-code insertion facility [13.8] is not implemented; the relevant
module had to be rewritten.

e The pragma Interface is implemented as required. In fact, it is rather more
powerful than required. In particular, it allows data objects to be shared
between Ada and assembler — which allowed some of the code to be simplified
— and it allows, to a limited extent, the user to specify the parameter-passing
strategies to be used when Ada calls assembler. Unfortunately, one strategy it
does not permit is to pass the parameters in registers

e The pragma Inline is implemented, and works across compilation boundaries.

e The generic Unchecked_Conversion [13.10.2] is implemented for all relevant
combinations of types. In addition, the VAX version of package System
contains some useful instantiations, including for example conversions between
integers and addresses. One problem with the VAX implementation, however,
is that the compiler insists on checking the constraints of the target subtype
after the conversion. Problems were anticipated with this, but were not in fact
encountered.

J.3.5. Pragmas
The Kernel uses the following standard pragmas:

e pragma INLINE.
e pragma INTERFACE.

These are both implemented, as detailed above.

CMU/SEI-89-TR-19

J.3.6. Ada Use Subset

As well as making certain assumptions about what the Ada system does provide, the Kernel
was designed and written under certain assumptions about what it need not provide. In
effect, it employs an application subset of the language, avoiding constructs that the
implementation team believed either unnecessary or possibly inefficient.

» The Kernel makes no use of tasking.

¢ Records with discriminants are not used. This has no visible impact on the
application, but has caused some slightly strange coding styles in parts of the
Kernel.

» Objects of dynamic size are never declared within subprograms.
» Subprograms are not nested within other subprograms.

» Allocated storage is never deallocated, either explicitly or implicitly. All uses of
the Ada allocator could be removed from the Kernel, if it seemed desirable for a
port to use a custom storage-management system.

e The separate clause is not used. This is to avoid the name management
problems that arise with library subunits.

All the above were still worth avoiding. Objects of dynamic size are particularly unpleasant
in VAX Ada.

J.4. Basic Data Types and Operations

Appendix L contains the hardware tailoring for the VAX-11 with the current compiler and
version.

J.5. Encapsulation of Assembly Code

Appendix A contains the assembler interface for the VAX-11 with the current compiler and
version.

364 CMU/SEI-89-TR-19

Appendix K: VAX-11 Assembler Interface

This appendix gives the assembler interface used in the VAX-11 with the current compiler
and version. Full details of the compiler and version conventions can be found in [VPRRM
3].

K.1. Linkage

Linkage is effected by the pragma INTERFACE, which can also specify the
parameter-passing strategy and the linkname. It is possible to implement overioaded
subprograms in machine code, provided the linknames are unique.

The linker accepts 31 characters as significant, which was enough to aliow the pervious
DARK conventions for linkname generation to be used unchanged.

Within the assembler body, the linkname is generated by a standard GLOBAL directive:
.GLOBAL Linkname

The assembler routines must be presented to the Ada library as implementations cof
package or subprogram bodies, as described in [VPPRM 3]. A file may contain either Ada
code or assembler code, but not both. DARK naming conventions require that a file
containing assembler code be named exactly as it would be if it were in Ada, but with the
additional suffix _machine_code. An Ada specification can be implemented, therefore, by at
most one Ada body and one assembler code body. However, the VMS Ada library does not
permit more than one body for any specification. In that event, only one DARK module had
originally possessed two bodies — process_encapsulation — and that had to be revised for
other reasons.

K.2. Program and Data Sections

Code and data must be generated in the apprcpriate sections (PSECTs) and with the
correct attributes. These are given in [VPRRM 3.4] and were copied exactly in the
machine-code bodies. In particular, the code must be read-only, reentrant, and position
independent.

K.3. Data Representation

The data renresentations common to both Ada and assembler levels are as specified in
Appendix A. There was no difficulty with these representations.

The supplied package Standard also defines a 64-bit integer data type and associated
operations. Unfortunately, it is defined as Unsigned_Quadword, which made it inappropriate
as an efficient representation of Kernel_Time, so the DARK module kernel_time had to be
rewritten in VAX machine code.

CMU/SEI-88-TR-19 365

The definition of time used by the Kernel was, however, changed to correspond to the VMS
representation. This is as a 64-bit signed integer with 100 ns resolution. This change was
encapsulated in the kermnel_time module; the only external impact is that the legal range of
epoch and elapsed time contracted to approximately 15,000 years.

K.4. Procedural Interface

The procedural interface uses the following protocol [VPRRM 3]

K.4.1. Entry and Exit Protocol

e Call is by a CALLS instruction, according to the VAX standard. This requires a
valid stack front pointer to be maintained in SP, and a valid frame pointer in FP.
Parameters are evaluated and pushed onto the stack in reverse order before
the call.

¢ Return is likewise by an RET instruction, which pops the stack frame and the
parameters. Accordingly, out parameters cannot be returned by value — the
parameter space is deallocated by the RET before the caller can reclaim the
returned value.

K.5. Register Jsage

e The called routine must save and restore any registers it uses except RO and
R1.

o It must return a simple function result in RO, if 32 bits or less, and in <R0,R1> if
64 bits or less and scalar. Other function results are retumed in a hidden out
parameter.

K.5.1. Stack Manipulation
e The called routine must at all times maintain in SP a valid hardware stack
pointer. It must also maintain a valid frame pointer in FP.

e The called routine may claim local storage by lowering the stack pointer; it need
not restore the old value since the RET instruction automatically restored SP
from FP.

* The called routine does not have to build any special stack frame for Ada.

K.5.2. Parameter Passing
The parameter passing conventions are as follows.

366 CMU/SE!-89-TR-19

K.5.3. Mode of Transmission

e Parameters are never passed by value. If the RM requires the effect of
by-value transmission, the parameter is passed by reference and the caller
makes a local copy. If the parameter is of mode In out or out, and the returned
value might violate a constraint, the caller also makes a local copy and passes
a pointer to it.

o Parameters of simple (scalar, access and address) types are passed by ‘fake
value' in this manner.

e Parameters larger than 4 bytes, and all parameters of structured types, are
passed by simpie reference. This reference is the machine address of the
lowest-numbered storage unit, and is a 4-byte value.

e Some parameters of dynamic size are passed by VAX ’'descriptor’ of which the
less said the better.

K.5.4. Manner and Order of Transmission
¢ Parameters are pushed on the hardware (SP) stack in reverse order. That is,
the rightmost parameter is pushed on the stack first, and the leftmost last.
e All parameters passed by reference pass the address as an In parameter.

K.5.5. Accessing Parameters and Returning Function Results

« All simple parameters can be treated as if passed by reference.

¢ Results not larger than 4 bytes are returned in register RO. Scalar results not
larger than 8 bytes are returned in <R0,R1>.

o Other results are returned in a hidden out parameter whose address is passed
as the first parameter to the function, before the first true parameter.

e Although some Ada types require hidden parameters to be passed along with
their actual values, no such types are used by any assembler subprogram.

K.6. Exceptions

K.6.1. Raising Exceptions

The assembler code never raises a user-defined exception. Where appropriate, it raises an
intrinsic exception by an explicit call of LIB§STOP, which is part of the Ada runtime.

K.6.2. Exception Propagation
The Ada runtime propagates exceptions upwards through stack frames, using the saved
information in each stack frame to find each caller.

In order for this to function, every assembler body that can raise an exception, and every
body through which an exception might propagate, must build a valid stack frame. This is
done as part of the hardware CALLS instruction, which therefore shall be used throughout.

CMU/SEI-89-TR-19 367

K.6.3. Guarded Regions
The representation of guarded regions was not researched.

368

CMU/SEI-89-TR-19

Appendix L: VAX-11 Tailoring

What follows is barely different from the MC68020 version, and captures the identical
functionality. Note that, had the types in package System been used directly, DARK would

have had to change all uses of Integer, Long_Integer, and Address.

L.1. Sizes of Data Types
bits_per byte : constant := 8;
byte : constant := 1;
word : constant := 2;

longwoxrd : constant := 4;

CMU/SEI-89-TR-19

369

L.2. Untyped Storage
type hw_byte is range 0..255;

type hw_bits8 is record
bit0 : Boolean:
bitl : Boolean:;
bit2 : Boolean:;
bit3 : Boolean:
bit4 : Boolean:
bit5 : Boolean:
bit6é : Boolean;
bit7 : Booclean;
end record;

for hw_bits8 use record
bit0 at 0 range 0..0:
bitl at 0 range 1..1;
bit2 at 0 range 2..2;
bit3 at 0 range 3..3;
bitd4 at 0 range 4. .4:;
bit5 at 0 range 5..5;
bit6 at 0 range 6..6:
bit7 at 0 range 7..7; -

end recocsd;

function to_hw bits8 is
new unchecked conversion (hw_byte, hw_bits8):

type hw_byte ptr is access hw_byte;
type hw_bits8 ptr is access hw__its8;

function to_hw byte ptr
is new unchecked_conversion(system.address hw_byte ptr):

function to_hw bits8 ptr
is new unchecked conversion(system.address hw _bits8 ptr):;

function to_hw bits8_ptr
is new unchecked_conversion(hw_byte ptr, hw bits8_ptr):

370 CMU/SEI-89-TR-19

L.3. Integer Types

type hw_integer is range -32_768 .. 32_767;
for hw_integer’size use 2 * bits_per_byte;

type hw_short_integer is range -128 .. 127;
for hw_short_integer’size use 1 * bits_per byte:

type hw_long integer is
range -2_147_483_648 .. 2_147_483 S47;
for hw_long_integer’size use 4 * bits_per byte:

type hw_natural is range 0 .. 32_767:
for hw_natural’size use 2 * bits_per_ byte:

type hw_positive is range 1 .. 32_767;
for hw_positive’size use 2 * bits_per byta:

type hw_long natural is range 0 .. 2_147_483 647:
for hw_long_natural’szize use 4 * bits_per byte’

type hw_long positive is range 1 .. 2_147_483 647:;
for hw_long positive’size use 4 * bits_per byte;

L.4. Duration
type hw_duration is
new duration range -86_400.0 .. +86_400.0;

for hw_duration’small ugn 2.0 ** (-14):;
for hw_duration’size use 4 * bits_per_byte:

L.5. Machine Addresses

type hw_address is new gystem.address:

function to_hw_address is
new unchecked conversion(hw_long_integer, hw_address):;

null hw_address : constant hw_addi-ess
:= to_hw_address(hw_long_integezr’ (0)):

CMU/SEI-89-TR-19

n

L.6. Strings

type hw_string is new string’

3r2

CMU/SEI-89-TR-19

r—
1
I
i
1
i
1
1
1
i
1
1
i
1
1
i
i
1
i
i

References
[ALRM 83]

[KFD 89]

[KUM 89]

[port 89]

[Raynal 86]

[TeleSoft 88]

[Ward 85]

American National Standards Institute, Inc.

Reference Manual for the Ada Programming Language.

Technical Report ANSI/MIL-STD 1815A-1983, ANSI, New York, NY,
1983.

Bamberger, J., C. Colket, R. Firth, D. Klein, R. Van Scoy.

Kernel Facilities Definition.

Technical Report CMU/SE!-88-TR-16, ESD-TR-88-17, ADA198933,
Software Engineering Institute, December, 1989.

Bamberger, J., T. Coddington, R. Firth, D. Klein, D. Stinchcomb, R. Van

Scoy.

Kernel User's Manual.

Technical Report CMU/SEI-89-UG-1, ESD-TR-89-15, Software
Engineering Institute, December, 1989.

Bamberger, J., T. Coddington, R. Firth, D. Klein, D. Stinchcomb, R. Van

Scoy.

Kernel Porting and Extension Guide.

Technical Report CMU/SEI-89-TR-40, ESD-TR-89-51, Software
Engineering Institute, Oct, 1989.

Raynal, M.
Algonithms for Mutual Exclusion.
The MIT Press, Cambridge, MA, 1986.

TeleGen2 - The TeleSoft Second Generation Ada Development System
for VAX/VMS to Embedded MC680X0 Targets
TeleSoft, 1988.

Ward, P.T. and S.J. Mellor.
Structured Development for Real-Time Systems.
Yourdon Press, Englewood Cliffs, NJ, 1985.

CMU/SEI-89-TR-19

373

0

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

1e. REPORT SECURITY CLASSIFICATION

1b. RESTRICTIVE MARAKINGS

NONE

UNCLASSIFIED
2. SECURITY CLASSIFICATION AUTHORITY 3. OISTRIBUTION/AVAILABILITY OF REPORT
N/A APPROVED FOR PUBLIC RELEASE
2b. DECLASSIFICATION/DOWNGRADING SCHEQULE DISTRIBUTION UNLIMITED
N/A
5. MONITORING ORGANIZATION REPORT NUMBERI(S)

e PEARFCRMING ORGANIZATION REPORT NUMBER(S)

CMU/SEI-89-TR-19

ESD-89-TR-27

SEI

6a. NAME OF PERFORMING ORGANIZATION b, QF FICE SYMB80L
(If applicable)
SOFTWARE ENGINEERING INST.

73, NAME OF MONITORING ORGANIZATION

SEI JOINT PROGRAM OFFICE

6c. ADDRESS (City, State and ZIP Code}

CARNEGIE-MELLON UNIVERSITY
PITTSBURGH, PA 15213

75. ADDRESS (City. State and ZIP Code)
ESD/XRS1

HANSCOM AIR FORCE BASE
HANSCOM, MA 017131

8b. OFFICE SYMBOL

Ga. NAME OF FUNDING/SPONSORING
(If applicable)

ORGANIZATION

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

SEI JOINT PROGRAM OFFICE ESD/XRS1 F1962885C0003

8c. ADQRESS (City, State and ZIP Code) 10. SOURCE OF FUNDING NOS.
CARNEGIE-MELLON UNIVERSITY PROGRAM PROJECT TASK WORK UNIT
PITTSBURGH, PA 15213 ELEMENT NO. No. NO. Ne-

11. TITLE (Include Security Classification) 63 752F N/A N/A N/A
KERNEL ARCHITECTURE MANUAL

12. PERSONAL AUTHOR(S)

David Stinchcomb,

Judy Bamberger, Timothy Coddington, Currie €olket, Robert Firth, Daniel Klein, Roger VanSco:
15. PAGE COUNT

134 TYPE OF REPORT 13b. TIME COVERED

14. OATE OF REPORT (Yr, Mo., Day)

FINAL FROM To December 1989 373
16, SUPPLEMENTARY NOTATION
17. COSATI CODES 18. SUBJECT TERMS (Conlinue on reverse if necessary and identify by block number)
FIELOD GROUP SUB. GR.

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

20. OISTRIBUTION/AVAILABILITY OF ABSTRACT

UNCLASSIFIED/UNLIMITED k same as reY. (J oric usens (3

21, ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED, UNLIMITED DISTRIBUTION

22a. NAME OF RESPONSIBLE INDIVIOUAL

KARL H. SHINGLER
L

22b. TELEPHONE NUMBER
tinclude Area Code)

412 268-7630

SEI_JFO

22c. OFFICE SYMBOL

DD FORM 1473, 83 APR

EDITION OF 1 JAN 7115 OBSOLETE.

SECURITY CLASSIFICATION OF THIS PAG

|

